loading...
The most updated posts
oliver بازدید : 71 شنبه 28 اسفند 1389 نظرات (0)
چکيده
پيشرفت روزافزون در زمينه فناوري نانو و کاربردهاي گوناگون و گسترده آن در گرايش‌هاي مختلف علمي و صنعتي ، باعث شده است که شرکت‌هاي توليدکننده سموم دفع آفات نيز براي بهبود مشخصات محصولات خود، به دنبال بهره‌گيري از اين فناوري باشند. تحقيقات نشان داده است که مي‌توان با استفاده از فناوري نانو مزاياي فراواني در آفت‌کش‌ها ايجاد نمود که مواردي مانند کاهش مصرف سموم، افزايش کارايي، سازگاري بيشتر با محيط زيست، بهبود کيفيت و کاهش خطرات تماسي از آن جمله است. در اين مقاله فعاليت‌هايي كه شركت‌هاي بزرگ توليد كننده سموم دفع آفات در اين مسير انجام داده‌اند و محصولات جديد آنها معرفي شده اند.

آفت‌کش‌هاي نانو به شکل امولسيون
امروزه آفت‌کش‌هايي با ماده مؤثر نانومقياس به بازار راه يافته‌اند. بسياري از شرکت‌هاي شيمي کشاورزي پيشتاز در جهان ، فعاليت‌هاي تحقيق و توسعه خود را به سمت گسترش فرمولاسيون‌هاي جديد نانو مقياس هدايت مي کنند؛ براي مثال شرکت BASF آلمان ، كه رتبه چهارم شركت‌هاي شيمي کشاورزي و بزرگ‌ترين شرکت شيميايي دنيا را به خود اختصاص داده است، توان بالقوه و مفيد فناوري نانو را در توليد فرمولاسيون آفت‌كش‌ها مورد تأييد قرار داده و در اين رابطه دست به انجام تحقيقات پايه‌اي را زده است. اين شرکت پتنتي را تحت عنوان « نانوذرات بعنوان عامل محافظت از محصولات کشاورزي » ارائه كرده ، كه در آن از جزء فعال با اندازه ايده آل بين ده تا 150 نانومتر استفاده شده است [1]. اين ترکيب داراي مزايايي چون حلاليت آسان تر در آب ، پايداري بيشتر و قدرت آفت کشي بهينه است.
يکي ديگر از شرکت‌هاي پيشرو در اين زمينه ، شرکت Bayer Crop Science آلمان است كه دومين شرکت بزرگ توليدکننده آفت‌کش در سطح جهان محسوب مي‌شود. اين شرکت نيز پتنتي را ارائه نموده كه در آن از شکل امولسيون با پايداري ترموديناميکي و داراي جزء فعال نانو مقياس در حدود ده تا 400 نانو متر استفاده شده است [2]. اين شرکت پتنت خود را تحت عنوان ميكروامولسيون غليظ نام نهاده و مزيت‌هايي نظير كاهش مقدار استفاده ، تاثيرگذاري سريع‌تر، قابل اعتمادتر، طولاني‌تر و گسترده‌تر را براي آن مدعي شده است.
شرکت سينجنتا (Syngenta) نيز که اداره مركزي آن در سوئيس واقع است، در شمار بزرگ‌ترين شرکت‌هاي شيمي كشاورزي قرار دارد. اين شركت سومين شرکت توليد بذر دنيا است و از گذشته به فروش محصولات آفت‌كش فرموله شده به‌صورت امولسيون با جزء فعال نانو مقياس مبادرت مي‌نموده، كه تنظيم‌کننده رشد Primo MAXX و قارچ‌کش Banner MAXX از آن جمله است. اين شرکت مدعي است که اين محصولات ذراتي به کوچکي حدود صد نانو متر دارند، و به همين دليل باعث گرفتگي فيلترهاي مخازن اسپري نشده و با آب کاملاً مخلوط مي‌شوند؛ به طوري که داخل مخزن اسپري ته‌نشين نمي‌گردند [3]. قارچ‌کش Banner MAXX حتي بعد از گذشت يک سال از آب جدا نمي‌شود ، در حالي كه قارچ‌کش‌هاي داراي ذرات فعال با اندازه بزرگتر، نوعاً جهت جلوگيري از کلوخه شدن هر دو ساعت يک بار نياز به هم زدن دارند. سينجنتا اعلام داشته که اندازه ذرات اين فرمولاسيون حدود 250 مرتبه کوچک‌تر از ذرات آفتکش معمولي است. براساس ادعاي شرکت مذکور، ماده مؤثره اين فرمولاسيون به داخل سيستم گياه جذب و به وسيله باران يا آبياري نيز شسته نمي‌شود [4].
همچنين شرکت Agropharm، به عنوان يک شرکت پيشرو انگليسي، محصولي با فرمولاسيون نانوامولسيون با نام Agrodelta به بازار ارائه كرده است که به علت استفاده از فناوري نانو در توليد آن ، اين امولسيون بسيار تآثيرگذارتر از نمونه‌هاي معمول مي‌باشد [5].

آفت‌کش‌هاي نانو کپسوله شده
يك روش پيشرفته جهت فرمولاسيون آفت‌كش‌ها در مقياس نانو، کپسوله کردن آنهاست : در اين روش ماده موثره نانومقياس در داخل يك محفظه يا پوسته کوچک بسته‌بندي مي‌گردد. طبق اطلاعات صنعتي، فرموله كردن آفت‌كش‌ها در کپسول‌ها باعث تغييرات انقلاب گونه‌اي مي‌گردد كه توانايي کنترل رهايش آفت‌کش در شرايط مختلف را فراهم مي‌آورد. همچنين اين اقدام باعث بالا رفتن حلاليت، كاهش تماس مواد فعال با کاربران و حفاظت از محيط زيست مي گردد [6].
شرکت مونسانتو، بزرگ‌ترين توليدکننده بذر GM و علف‌كش پرمصرف رانداپ، در آمريكا، تاکنون تعدادي از آفت‌كش‌هاي ميكروكپسوله شده را به فروش رسانده است. در سال 1998 مونسانتو تفاهم‌نامه‌اي را با شرکت فناوري نانو فلامل جهت گسترش نانوكپسول‌هاي Agsome حاوي رانداپ منعقد نمود ، كه از نظر شيميايي بايد مؤثرتر از فرمولاسيون هاي معمول باشد [7].
همچنين شرکت سينجنتا که خود را رهبر جهاني در فناوري ميكروكپسوله کردن معرفي نموده و ادعاي پيشرو بودن در به‌کارگيري اين فناوري در آفت‌کش‌ها را دارد، محصولي به نام تجاري Zeon توليد مي‌کند که هر ليتر از فرمولاسيون ميكروكپسوله آن حاوي حدود 50 تريليون کپسول است. طراحي اين فراورده به‌صورتي است كه در تماس با برگ سريعاً آزاد مي شود [6 و11]. با توجه به اين كه اين كپسول‌ها به سختي به برگ‌ها مي‌چسبند، حتي در اثر بارش باران ، از برگ جدا نمي شوند. محصول ديگر سينجنتا که مشابه اين مورد است، در مورد بذرها و به منظور کنترل آفت‌هاي خاكي دانه‌هاي جوانه زده بكار مي‌رود. دانشمندان سينجنتا در حال تحقيق بر روي كپسول‌هايي هستند كه با سازوكار ماشه‌اي آزاد مي‌شوند و در آنها ديواره بيروني کپسول فقط در شرايط خاصي باز مي‌گردد. براي مثال سينجنتا پتنتي را در اختيار دارد كه به آن ميكروكپسول gutbuster گفته مي‌شود و مزيت آن اين است که تنها در محيط قليايي، نظير معده انواع خاصي از حشرات مي‌تواند باز شود [8]. به گفته سينجنتا، ميكروكپسوله کردن روشي است كه مي‌تواند اثرات جديد و اعجاب‌آوري از مواد مؤثره شناخته شده کنوني را توليد كند؛ اين عمل فروش را به گونه‌اي افزايش مي دهد كه گويي يک ماده موثر جديد اختراع شده است [6]. به عبارت ديگر اندازه كوچك، تأثيرات يك آفت‌كش را بهينه مي‌سازد و طراحي كپسول نيز مي‌تواند به‌صورتي باشد كه آزاد شدن جزء فعال فقط در شرايط ويژه‌اي اتفاق افتد. اين شرکت همچنين در حال تحقيق و بررسي روي آفت‌كش‌هاي نانو كپسوله شده است [9].
به هر حال اين واضح است كه استفاده از مقياس نانو باعث تغييرات شگرفي در رفتار محصول فرموله شده مي‌شود؛ از آن جمله مي‌توان به افزايش تأثير ماده مؤثره و فعاليت بيولوژيکي طولاني‌تر آن و در خصوص آفت‌کش‌هاي کپسوله شده به رهايش کنترل‌شده ماده مؤثره اشاره نمود.
مزيت بزرگ فناوري کپسوله کردن سموم، ايجاد توانايي رهايش کنترل شده آنهاست که در اين مسير فناوري نانو شرکت‌ها را قادر به دستکاري کردن خواص قشر بيروني کپسول به‌منظور کنترل رهايش ماده مي سازد. رهايش کنترل شده علاوه بر صنايع شيمي-كشاورزي در صنايع ديگر همچون داروسازي نيز بسيار با اهميت است.
فرايند رهايش ماشه‌اي ماده قرار گرفته در نانو يا ميکرو کپسول را مي توان با روش هاي مختلف انجام داد، مثال هايي از انواع آنها در ادامه آورده شده است:
رهايش تدريجي: در اين شيوه كپسول محتويات خود را به‌آهستگي و در زمان بيشتري آزاد مي‌كند؛ براي مثال رسانش تدريجي يك ماده به بدن [10].
رهايش سريع: در اين فرايند پوسته كپسول در تماس با يك سطح مي شكند؛ براي مثال هنگامي كه آفت‌كش به برگ برخورد مي‌كند [11].
رهايش با رطوبت: در اين شيوه پوسته کپسول در تماس با آب مي شکند و محتوياتش را خالي مي‌كند؛ براي مثال رهايش آفت‌کش در خاك مرطوب [12].
رهايش با حرارت: هنگامي كه دماي محيط از يك درجه حرارت به خصوص بيشتر شود پوسته کپسول مي‌شكند و محتوياتش را آزاد مي كند [13].

رهايش با pH: عمل شكستن نانو كپسول فقط در يك محيط اسيدي يا قليايي اتفاق مي‌افتد؛ براي مثال در داخل شكم يک حشره يا يك سلول [14].

منبع:سایت نانو

oliver بازدید : 55 شنبه 28 اسفند 1389 نظرات (0)
براي افزايش بازدهي تبديل انرژي نور خورشيد، روش‌ها و ابداعات جديدي مورد نياز است. در اين مسير استفاده از نانولوله‌هاي کربني در سيستم‌هاي جمع‌آوري فوتون (ذرات نور) مسيري جديد در طراحي اين سيستم‌ها به وجود آورده‌است. اين مقاله به بحث دربارةروش‌هاي استفاده از نانولوله‌هاي کربني به عنوان الکترودهاي حساس به فوتون و نقش آنها در تبديل انرژي خورشيدي به جريان الکتريسيته مي‌پردازد.
سازمان ملل متحد، آيين‌نامه‌اي را تحت عنوان تثبيت ميزان غلظت گازهاي گلخانه‌اي اتمسفر در حدي که بتواند از خطر تداخل آنتروپوژنيک (anthropogenic) با سيستم آب و هوايي جلوگيري کند، به عنوان يکي از پيمان‌نامه‌هاي زيرساختاري قرار داده‌است؛ اين در حالي است که تا سال 2050 ميلادي ده تريليون وات (TW) انرژي بدون انتشار كربن بايد توليد شود که تقريباً معادل همة منابع انرژي‌هاي موجود تا به امروز است.
براي مواجه شدن با افزايش تقاضاي انرژي در آينده‌اي نزديک، چاره‌اي جز جستجوي منابع انرژي پاک که از نظر پسماند نيز مشکلي نداشته باشند، وجود ندارد. سوخت‌هاي فسيلي و مشتقات آنها، سوخت هسته‌اي و سوخت‌هاي تجديد‌پذير از اصلي‌ترين منابع تأمين‌کنندة ده تريليون وات انرژي در سال‌هاي آتي هستند.
در ميان انرژي‌هاي تجديدپذير (مثل باد، آب، زمين گرمايي (hydrogeothermal) ، خورشيد)، انرژي خورشيدي به عنوان يک منبع انرژي تمام‌ناشدني يکي از قابل قبول‌ترين منابع براي دستيابي به اين تقاضاي انرژي در آينده است. فعلاً انرژي توليدشده از نور خورشيد کمتر از 01/0 درصد از تقاضاي انرژي در جهان است. اگر چه انرژي خورشيدي و تشعشعات آن در مقالات و تحقيقات زيادي مورد بررسي قرار گرفته‌است ولي به‌منظور دستيابي به روش‌هاي اقتصادي‌تر و داراي راندمان بالا براي جمع‌آوري فوتون‌ها نوآوري‌هايي لازم است.
طي دهة اخير نانومواد به‌عنوان سيستم‌هايي جديد براي جمع‌آوري انرژي نور مطرح شده‌اند. خواص کم‌نظير الکتريکي و الکتروني، پايداري بالاي الکتروشيميايي و سطح بالايي که اين گونه مواد ايجاد کرده‌اند انگيزة بسياري از محققان را در به‌خدمت گرفتن نانوساختارهاي کربني (مثل نانولوله‌هاي تك ديواره) براي تبديل انرژي‌هاي مختلف برانگيخته‌است، به طور مثال فولرين‌ها خواص فوتوشيميايي بالايي از خود نشان مي‌دهند و به عنوان پرتابه الکترون (electron shattle) در پيل‌هاي خورشيدي فوتوشيميايي عمل مي‌کنند. اين مواد در بهبود بازده پيل‌هاي فوتوولتائيک (photo voltaic) آلي نقش مهمي را ايفا مي‌کنند.
در پيل‌هاي خورشيدي معمول فوتوشيميايي، لاية نيمه‌هادي به عنوان الکترودهاي فوتواکتيو عمل مي‌کند که با تحريک نور مرئي، جفت الکترون- حفره ايجاد مي‌کنند. يکي از حامل‌هاي بار (مانند الکترون) به‌سمت الکترود شمارنده رانده مي‌شود؛ در حالي که عامل بار ديگر (حفره) به‌وسيلة جفت اكسايش - كاهش موجود در الکتروليت حذف مي‌شود و به اين ترتيب جرياني از فوتون ايجاد مي‌شود.
نانولوله‌هاي تــــــک‌ديواره (SWNT) و نانولـــــــوله‌هاي (stacked- cup (SCCNT، به عنوان دو نوع از بهترين نانولوله‌هاي کربني در تبديل انرژي خورشيدي در مقالات معرفي شده‌اند. نانولوله‌ها به‌صورت معمول از شبکه‌هاي شش‌ضلعي کربني تشکيل شده‌اند كه مورفولوژي خاص آنها و در دسترس بودن سطوح داخلي و خارجي آنها براي افزودن عوامل شيميايي و اصلاح اين سطوح، کاربردهاي جديدي را براي اين مواد در فرايندهاي کاتاليستي و الکترونيکي به وجود آورده‌است.
نانولوله‌هاي تک‌ديوارة موجود شامل هر دو نوع نانولوله‌هاي فلزي و نانولوله‌هاي نيمه‌هادي با کايراليتي متفاوت هستند. تابع کار (work function) نانولوله‌هاي تک‌ديواره حدود 8/4- الکترون ولت بر اساس ميزان خلاء مطلق (AVS) است. نانولوله‌ها داراي باندگپي در بازة صفر تا 1/1 الکترون ولت هستند که البته کاملاً به کايراليتي و قطر لوله‌ها بستگي دارد. هنگامي که باند گپ نانولوله‌هاي نيمه‌هادي تحريک مي شود، دچار جداسازي بار مي‌شوند.
از نانولوله‌هاي کربني در سلول‌هاي خورشيدي به دو صورت استفاده مي‌کنند (شکل 1) :
1 - تحريک مستقيم باند گپ نانولوله‌هاي نيمه‌هادي؛
2 - استفاده از نانولوله‌هاي رسانا به عنوان مجرايي براي عبور حامل‌هاي بار از نانوساختارهاي جمع‌کنندة نور.
در بخش بعد روشي که نانولوله‌ها را به‌صورت لايه‌اي متراکم درآورده و به عنوان الکترود حساس به فوتون روي سطح رساناي پيل‌هاي خورشيدي مي‌نشانند توضيح داده شده‌است. شمايي از دو روش موجود در شکل (1) آمده ‌است.
رسوب الکتريکي نانولوله‌هاي کربني تک‌ديواره روي الکترود شيشه‌اي رسانا
قدم اول در ساخت پيل‌هاي خورشيدي، سوار کردن نانولوله‌ها به‌صورت فيلم نازک روي سطح الکترود است که در اين زمينه روش‌هاي مختلفي وجود دارد. در اين آزمايش از روش بسيار مؤثر رسوب الکترو فورتيک (electrophoretich) در نشاندن نانولوله‌هاي کربني روي سطح الکترود، استفاده شده است.
ابتدانانولوله‌هاي کربني به همراه نمک آمونيوم (تترا اُکتيل آمونيوم برمايد يا TOAB) در تتراهيدروفوران (THF) حل مي‌شوند. سپس اين سوسپانسيون به پيل الکترو فورتيک شامل دو الکترود موازي شفاف به نور (OTE) به ضخامت پنج نانومتر، انتقال مي‌يابد. بعد از برقراري ولتاژ 40 ولت مستقيم (dc) نانولوله‌ها به‌سمت الکترود مثبت رفته، بعد از دو تا سه دقيقه فيلم نازکي از نانولوله‌هاي تک‌ديواره روي سطح الکترود رسوب مي‌کند (شکل 2) با افزايش زمان اعمال ولتاژ، ضخامت فيلم نانولوله‌هاي تک‌ديواره افزايش مي‌‌يابد. لايه تشکيل‌شده کاملاً قوي و براي اندازه‌گيري‌هاي الکتروشيميايي نيز مناسب است.
هنگامي که ميدان مستقيم بين دو الکترود شيشه‌اي بيشتر از 100V/Cm باشد نانولوله‌ها به جاي رسوب روي سطح در عرض فضاي بين دو الکترود و به‌صورت صفوف هم‌خط و موازي روي هم‌ رسوب مي‌کنند. اين تجمع نانولوله‌هاي کربني کاملاً از هم جدا بوده و به‌صورت بسيار جالب و مناسب در يک خط و به صورت عمود بر سطح الکترود قرار مي‌گيرند. نمونه‌اي از آن چه در ولتاژهاي بالا ايجاد شده در شکل (2) آورده شده‌است.
بنابراين به‌سادگي مي‌توان جهت‌گيري و رسوب‌دهي لايه‌هاي نانولوله‌هاي تک‌ديواره را با کنترل ولتاژ تغيير داد. به روشي مشابه مي‌توان فيلم نانولوله‌هاي تک‌ديواره و SCCNT ، را روي سطح الکترودهاي ديگري مثل صفحات بسيار نازک کربني رسوب داد. براي تعيين مورفولوژي الکترودهاي متشکل از نانولوله‌هاي تک‌ديواره و SCCNT از ميکروسکوپ الکتروني روبشي SEM استفاده شده که تصاوير آن در شکل (3) آورده شده‌است.
 
جداسازي بارهاي القاء شدة فوتوني در فيلم نانولوله‌هاي تک‌ديواره
از خواص جالب نانولوله‌‌هاي کربني نيمه‌هادي، توانايي آنها در پاسخ‌دهي به نور است. به عنوان مثال در سالهاي اخير با استفاده از پاسخ الاستيک كلاف هاي موازي نانولوله‌هاي کربني که بين دو الکترود فلزي قرار گرفته بودند، خاصيت تحريک‌پذيري فوتوني فيلم‌هاي نانولوله‌هاي کربني مشخص شده است. آوريس و همکارانش (Avouris) پديده لومينسانس حامل‌هاي تابش‌کنندة بار را به‌وسيلة ترانزيستورهاي اثر- ميداني (FET) نانولوله‌هاي کربني دو‌قطبي مشاهده کردند. الکترون- حفره‌ها به يک مدار خارجي تزريق مي‌شوند و با ترکيب مجدد آنها نور توليد مي‌شود.
گزارش‌هاي اخير در مورد اثر فلوئورسانسي باند گپ از نمونه‌هاي نانولوله‌هاي نيمه‌هادي تك ديوارة منفرد، نشان مي‌دهد که امکان تصحيح خواص اپتيکي نانولوله‌ به كمك نانولوله هاي منفرد وجود دارد. مطالعات اسپکتروسکپي نشان مي‌دهند که زمان ماندن جفت الکترون- حفره در لبة لايه حدود صد فمتوثانيه بعد از القاي فوتوني ون هو (van Hove) در ساختار لوله‌اي است. مطالعات اخير نشان دهندة توانايي ساختار لايه‌اي نانولوله‌ها در جداسازي جفت الکترون- حفره به‌وسيلة القاي نورمرئي است.
به‌منظور استفاده از حامل‌هاي بار توليدشده به‌وسيلة فوتون براي ايجاد جريان الکتريسيته، ترکيب مجدد حامل‌هاي بار محدود شده فضايي در نانولوله به وسيلة برهم‌کنش‌هاي کولمبي با پيوندهاي دوگانه که اکسايتون نام دارند، جفت مي‌شوند. اغلب اين اکسايتون‌ها از سطوح بالاي 2 C و 2 V ، از طريق گذارهاي بين باندي به ترازهاي 1 C و 1 V زير گپ افت کرده، و بدين ترتيب يک اکسايتون زير باندگپ ثانويه (Second Sub-bandgap) را مي‌سازند.
تنها کسر کوچکي از اكسايتون‌ ها قادر به تجزيه شدن و تشکيل الکترون- حفره‌هاي جفت‌نشده هستند. جداسازي اكسايتون‌ها به‌دليل ايجاد حالت بارهاي تفکيکي نقش مهمي در توليد جريان فوتوني دارد.
جداسازي بارها در نانولوله‌ها به‌وسيلة طيف‌سنجي با پروب پمپ ليزر فمتوثانيه‌اي (Femtosecond laser pump-probe spectroscopy) به‌خوبي مورد تحليل و بررسي قرار مي‌گيرد. اين روش براي تحقيق در مورد فرايندهاي بسيار سريع که بر اثر تحريک نانولوله‌هاي کربني يا مواد نيمه‌هادي اتفاق مي‌افتند،بسيار مفيد است. در يک آزمايش واقعي، تغييرات جذب در نمونه در زمان‌هاي گذار متفاوت از طريق تحريک با يک پالس ليزري کوتاه ثبت شده‌است. طيف‌هاي جذبي مختلف در زمان‌هاي گذار مختلف با تحريک سوسپانسيون نانولوله‌هاي تک‌ديواره در HTF با پالس ليزري 387 نانومتر با پهناي 130 فمتوثانيه ثبت شده است. در شکل (5) نمونه‌اي از طيف جذب انتقالي و از بين رفتن جذب در پالس 700 نانومتر نشان داده شده‌است. القاي فوتوني باعث رنگبري (bleaching) جذب نانولوله‌هاي تک‌ديواره در ناحية قرمز طيف مي‌شود. پهناي باند بي‌رنگ با تغيير قطر نانولوله‌ها و زاويه کايرال و توده شدن ذرات تغيير مي‌کند و بي‌رنگ شدن در ناحية مرئي که مطابق انتقال V2-C2 است در کمتر از يک پيکوثانيه تجديد مي‌شود که از اين بابت شبيه به ايجاد باند الکترون- حفره و يا انتقال برانگيختگي به باند C1- V1 است. محققان مشاهده کردند که جمع‌آوري جفت الکترون- حفره در باند گپ اصلي V1-C1 و طول عمرشان (100-10 پيكوثانيه) به‌شدت به برانگيختگي بستگي دارد. اين دانشمندان براساس تفاوت‌هايي که بين بازيافت جذب انتقالي و از بين رفتن گسيل‌ها وجود دارد معتقدند كه پيچيدگي‌هاي حالت‌هاي مختلف به دام انداختن بار، فاکتور مهمي در انتقال الکترونيکي محسوب مي‌شود.
به طور کلي حضور چنين حالت‌هاي سطحي، در تثبيت حامل‌هاي بار توليدي و شرکت در توليد جريان فوتوني بسيار مؤثر است و با افزايش احتمال جمع‌آوري در سطح الکترود، افزايش جداسازي بارها نيز قطعي مي‌شود. بي‌رنگ شدن انتقالي که به دنبال القاي پالس ليزري ايجاد مي‌شود نشان‌دهندة تجمع تعداد قابل قبولي از حامل‌هاي بار روي نانولوله‌هاي تک‌ديوارة موجود است. سؤالي که در اينجا مطرح مي‌شود چگونگي جمع‌آوري مناسب حامل‌هاي بار فوتوالقايي توليدشده روي نانولوله‌هاي تک‌ديواره براي توليد جريان الکتريکي است، مانند آنچه در نيمه‌هادي‌هاي ديگر و پيل‌هاي فوتوولتائيک ديگر اتفاق مي‌افتد.
 
سلول‌هاي خورشيدي فوتوالکتروشيميايي
با استفاده از نانولوله‌هاي تک‌ديواره و SCCNTهاي رسوب‌داده‌شده به روش الکتروفورتيک، به عنوان الکترودهاي حساس در مقابل ذره‌هاي فوتون، مي‌توان سلول‌‌هاي فوتوالکتروشيمي ساخت. با توليد زوج اكسايش- كاهش مانند (-I2/I3) در حلال استونيتريل مي‌توان الکتروليت رسانايي بين فيلم نانولوله‌ و الکترود شمارنده پلاتين به وجود آورد. شکل‌هاي (6) و (7) نشان‌دهندة پاسخ فيلم نانولوله‌هاي تک‌ديواره در برخورد با نور گسيل‌شده است. نور برخوردي (با طول موج بزرگتر از 400 نانومتر) باعث برانگيخته شدن نانولوله‌هاي تک‌ديواره ها و توليد حامل‌هاي بار مي‌شود. ايجاد آني جريان فوتوني را بعد از برانگيخته شدن در شکل (6) مشاهده مي‌کنيم. بيشترين جريان و ولتاژ ايجاد شده در اين آزمايش به‌ترتيب 8µA/Cm2 و 12mV است. بازدهي تبديل فوتوني به‌صورت نسبت فوتون‌هاي گسيل‌شده به حامل‌هاي بار (IPCE) تعريف مي‌شود که با اندازه‌گيري جريان فوتوني در طول موج‌هاي القائي متفاوت به وجود آمده‌است. بيشترين مقدار IPCE در حدود 15/0 درصد در طول موج 400 نانومتر به دست آمده‌است، اين در حالي است که انتظار مي‌رفت اين مقدار براي پيل‌هاي خورشيدي فوتوشيميايي در بازة 90-80 درصد باشد. گرچه مقدار IPCE به‌دست‌آمده براي پيل‌هاي خورشيدي ايجادشده به‌وسيلة نانولوله‌ها نسبتاً کم است ولي قابليت تكرار و تجديدپذيري اثر فوتوالکتروشيميايي مي‌تواند باعث ايجاد جريان پايدار در زوج اكسايش- كاهش موجود (I2/I3-) شود.
توليد جريان کاتدي فيلم نانولوله‌هاي تک‌ديواره سازوكاري را نشان مي‌دهد که در آن حفره‌هاي توليدشده به‌وسيلة فوتون در سطح OTE جمع مي‌شوند و در يک گردش خارجي به الكترود شمارنده انتقال مي‌يابد. ايجاد مجدد زوج اكسايش- كاهش (I2/I3-)، باعث پاک شدن سطح الکترود از بارها مي‌شود که خود در رساندن جريان فوتوني به حالت پايدار نقش بسزايي دارد. مشاهدة جريان فوتوني کاتد باعث تقويت اين نظريه مي‌شود که نانولوله‌هاي تک‌ديواره استفاده‌شده در اين تحقيق داراي خواص نيمه‌هادي نوع p هستند.
قرار دادن لايه‌اي از SnO2 روي OTE ، سطح وي‍ژه را براي جمع‌آوري بارهاي توليدشدة فوتوني افزايش مي‌دهد و همان طور که از نتايج نيز برمي‌آيد اين افزايش سطح الکترود باعث سه برابر شدن جريان فوتوني در سيستم مي‌شود. نانولوله‌هاي کربني تك ديواره و يا چندديواره اغلب حالت توده شدن و تجمعي به خود مي‌گيرند؛ اما نانوذرات SCCNT هنگامي که روي سطح الکترود رسوب مي‌کنند به‌صورت ذرات مجزا هستند.
تفاوت در شکل (مورفولوژي) اين دو فيلم در تصاوير SEM (شکل 3) قابل مشاهده است. همان طور که در مطالعات قبلي نيز خاطر نشان شده‌است اين لوله‌هاي توخالي داراي بخش عمده و قابل توجهي لبه‌هاي خارجي و روباز هستند که نيروي واندروالس بين لوله‌ها را به کمترين مقدار خود مي‌رساند. به طور کلي فيلم‌هاي SCCNT در پيل هاي فوتو الکتروشيميايي عملکرد بهتري نسبت به نانولوله‌هاي تک‌ديواره نشان مي‌دهند.
الکترود OTE/SnO2/SCCNT به محض قرار گرفتن در معرض القاي نورمرئي جريان فوتوني ايجاد مي‌کند (فيلم SCCNT روي الکترود شيشه‌اي رسانايي ساخته شده‌است که روي آن ذرات SnO2 قرار گرفته‌است) .
براي ايجاد جريان آندي، الکترون‌هاي توليدشدة فوتوني درSCCNT به‌وسيلة نانوکريستال‌هاي SnO2 جمع مي‌شود. رفتار SCCNTهاي به‌وجودآمده بيشتر شبيه نيمه‌هادي‌هاي نوع n است که درست مخالف رفتار فيلم نانولوله‌هاي تک‌ديواره عمل مي‌كنند. بررسي اثر آلايش ذاتي نانولوله‌ها (dopant) در طول سنتز آنها و يا تأثير عوامل شيميايي در ايجاد خواص نيمه‌هادي‌ نوع n يا p در نانولوله‌هاي کربني بسيار مؤثر است. مقدار بازده تبديل فوتون‌ها در طول موج‌هاي القايي متفاوت، در شکل (8) نشان داده شده‌است که بيشترين آن در چهار درصد بدون هيچ گونه باياس و در 17 درصد تحت باياس 2/0 ولت اتفاق مي‌افتند. اعمال باياس خارجي به‌‌وسيلة بار پتانسيل، فرايند جلوگيري از دوباره ترکيب شدن بارها در حرکت به‌سمت سطح الکترود را تسهيل مي‌کند.
در شرايط يکسان آزمايشگاهي، مقدار IPCE ثبت‌شده براي الکترود SCCNT نسبت به الکترود نانولوله‌هاي تک‌ديواره يك مرتبه بزرگتر است. هدف ما بالا بردن کارايي سيستم نسبت به پيل‌هاي خورشيدي ديگر و رساندن اين بازده به صد درصد، چيزي نزديک به مدل‌هاي تئوري است که به‌وسيلة تصحيح خواص سطحي و مورفولوژي نانولوله‌هاي تک‌ديواره و SCCNT در حال انجام است.
 
هيبريدهاي نانولوله‌ تک‌ديواره- نيمه‌هادي
در سلول‌‌هاي فوتوالکتروشيميايي که بر اساس نانوساختارها و يا فيلم‌هاي نيمه‌هادي مزوسکوپيک شکل گرفته‌اند انتقال الکترون در عرض ذرات، قابليت كاهش بازترکيب مجدد در مرزدانة ذرات را دارد. استفاده از نانولوله‌هاي کربني در سيستم‌هاي جمع‌آوري نور (مانند نيمه‌هادي‌ها) راه بسيار مؤثر و مناسبي براي تحت نفوذ قرار دادن همة سيستم‌هاي جمع‌آوري فوتون است. در شکل (9) اين دو روش قابل مشاهده هستند. نانولوله‌هاي تک‌ديواره کانديداي ايده‌آلي براي مجراي جمع‌آوري و انتقال بار سيستم‌هاي جمع‌آوري نور است. از موارد مورد توجه کامپوزيت CdS/SWNT (کادميوم سولفيد/نانولولة تک‌ديواره) است که مي‌تواند به‌وسيلة نور مرئي جرياني فوتوني با راندمان بسيار بالا ايجاد كند. نانولوله‌هاي تک‌ديواره از روشنايي و درخشندگي کادميوم جلوگيري مي‌کند و درخشندگي آن به‌وسيلة نانولوله‌هاي تک‌ديواره فرو نشانده مي‌شود.
آزمايش‌هاي جذب انتقال، غيرفعال شدن سريع برانگيختگي کادميوم سولفيد (CdS) را روي سطح نانولوله‌هاي تک‌ديواره تأييد مي‌کند همان‌طور که بي‌رنگ شدن انتقالي آن در حدود 200 پيکوثانيه تجديد مي‌شود.
به‌منظور آزمايش فرضيات مربوط به انتقال الکترون بين CdS برانگيخته شده و نانولوله‌هاي تک‌ديواره در لاية کامپوزيت، بايد ذرات کادميوم سولفيد را روي الکترود نانولوله‌هاي تک‌ديواره رسوب دهيم (مثل OTE/SWNT/CdS) ؛ ابتدا به‌وسيلة رسوب دهي الکتروفورتيک فيلم نانولوله‌هاي تک‌ديواره را روي OTE رسوب مي‌دهيم و بافروبردن الکترودها در محلولي شامل Cd2+وS2- نانوکريستال‌هاي CdS شکل مي‌گيرند، سپس الکترودها به‌وسيلة آب ديونيزه‌شده کاملاً شسته مي‌شوند، به‌طوري كه تنها يون‌هاي جذب‌شدة Cd2+ با S2- واکنش مي‌دهد. قابل توجه اينكه بعضي از اين روش‌هاي رسوب دهي جذب يوني شبيه به روش‌هايي است که براي ساخت فيلم‌هاي نانوساختار از فلزات كالكوژني بر روي اکسيد فلزات استفاده مي‌شود. همچنين يون Cd2+ به‌آساني روي نانولوله‌هاي تک‌ديواره جذب و با S2- واکنش داده و نانوکريستال‌هاي CdS را با ضخامت 500 نانومتر تشکيل مي‌دهد.
در اين جا از الکترود OTE/SWNT/CdS سلول فوتوالکتروشيميايي شامل محلول استونيتريل با 1/0 درصد تري اتانول آمين که به عنوان دهندة الکترون از‌بين‌رونده‌است استفاده شده‌است. تري‌اتانول‌آمين در از بين بردن حفره‌هاي فوتوني ايجادشده در سطح الکترود، دچار اکسيداسيون غيرقابل برگشت مي‌شود. با تحريك فيلم نانولوله‌هاي تک‌ديواره بهبود يافته با CdS به‌وسيلة نور مرئي (380 <λ نانومتر) جريان فوتوني در آن مشاهده مي‌شود.
براي حالتي که ولتاژ مدار باز حدود 200mV و جريان مدار کوتاه 6/2 ميكرو آمپر است، تابعيت IPCE با طول موج القايي در شکل (10) نشان داده شده‌است. کم شدن IPCE در500 نانومتر و به دنبال آن جذب اختصاصي CdS مشاهده مي‌شود (نمودار ضميمه‌شده در شکل 10) . همان طور که در طيف‌هاي فعال جريان فوتوني مشخص است جريان ايجادشده، تحت تأثير القاي اوليه CdS قرار مي‌گيرد. به علاوه مشاهدة جريان آندي فيلم SWNT/CdS، نشان‌دهندة جهت جريان از CdS به الکترود جمع‌آوري است که به‌وسيلة شبکة نانولوله‌هاي تک‌ديواره پوشانده شده‌است. به هر حال قابليت سيستم‌هاي نانوکامپوزيتي CdS/SWNT در جداسازي بارهاي فوتوالقايي موجب ايجاد روند جديدي در طراحي ساختارهاي جمع‌آوري نور شده‌است.
 
ساختار نانولولة تک‌ديواره- پورفيرين
نانولوله‌هاي تک‌ديواره داراي سطح منحني‌شکل ويژه‌اي هستند که اتصال آنها را به مولکول‌هاي آلي بزرگ به‌وسيلة برهم‌کنش‌هاي غيرکووالانسي يا نيروهاي آب‌گريز، آسان مي‌کند. مولکول‌هايي مانند مولکول‌ پورفيرين ميل زيادي به تركيب غيرکووالانسي با نانولوله‌هاي تک‌ديواره از طريق برهم‌کنش π-π دارند. برهم‌کنش بين پورفيرين و نانولوله‌هاي تک‌ديواره مي‌تواند براي رسيدن به ساختار سوپرمولکولار تنظيم شود. براي رسيدن به ساختار مورد نظر مي‌توان با استفاده از چنين خواصي، ترکيب پورفيرين- پروتونه (H4P2+) نوع H و J را به صورت توده‌شده روي سطح نانولولة تک‌ديواره جايگزين کرد. همچنين اين پديدة غيرمعمول‌، يعني توده شدن روي نانولولة تک‌ديواره، مي‌تواند کامپوزيت‌ها را به‌صورت باندهاي خطي در کنار هم قرار دهد. پورفيرين يک مولکول فوتوني فعال است که اغلب به‌منظور ايجاد (تقليد) فرايند فوتوسنتز طبيعي در آزمايشگاه مورد استفاده قرار مي‌گيرد. انتقال بار بين پورفيرين و نانولوله‌هاي تک‌ديواره به‌وسيلة القاي نورمرئي انجام مي‌شود. همچنين نانولوله‌هاي تک‌ديواره در انتقال الکترون‌هاي توليدشدة فوتوني به سطح و جمع‌آوري در سطح پيل فوتوالکتروشيميايي نقش بسزايي دارند و موجب تسهيل اين امر مي‌شوند. لاية هدايت نانولوله‌هاي نيمه‌هادي در بازة صفر تا نيم ولت بر حسب الکترود هيدروژني نرمال (NHE) قرار مي‌گيرد. انتقال بار از پورفيرين برانگيخته‌شده به مرزهاي نانولوله‌هاي تک‌ديواره به‌صورت زير است:
 

1)                NT-H4P2++hv ® SWNT-1 (H4P2+) +

2)               (SWNT-1 (H4P2+) + ® SWNT- (H4P+

سيستم‌هاي مولکولي نانولوله‌هاي تک‌ديواره و پورفيرين پروتونه مي‌توانند به‌وسيلة رسوب الکتروفورتيک به‌صورت آرايه‌هاي سه‌بعدي روي لايه‌هاي نانوساختاري SnO2 آرايش يابند. لاية کامپوزيتي SWNT-H4P2+ که روي سطح الکترود قرار گرفته، با اعمال پتانسيل 2/0 ولت بر حسب SCE، بازدهي (IPCE) سيزده درصد نشان مي‌دهد.
الکترودهاي تهيه‌شده از نانولوله‌هاي تک‌ديواره از طريق تقويت انتقال بار در اثر تعامل با پورفيرين القايي و ايجاد مجرايي براي انتقال الکترون‌هاي تزريق‌شده به الکترودِ جمع‌آوري، ايفاي نقش مي‌کنند. با توجه به اين مطالب، طراحي دقيق ساختمان نانولوله‌ها و توجه به خواص سطحي آنها در بهبود بازدهي پيل‌هاي خورشيدي الکتروشيميايي نقش بسزايي دارد.
نتيجه‌گيري
مثال‌هاي مورد بحث در اين مقاله موارد جالبي را در زمينة خواص فوتوالکتروشيميايي نانولوله‌هاي کربني ارائه مي‌دهد. بهبود جداسازي بارها در نانوساختارهاي کربني باعث ايجاد پيشرفت‌هاي زيادي در طراحي و توليد پيل‌هاي خورشيدي مي‌شود. ايجاد روش‌ها و راهبردهاي مناسب براي نشاندن دو يا چند جزء روي سطح الکترود، از عوامل کليدي در بهبود کارايي پيل‌هاي خورشيدي به شمار مي‌رود که در همين مسير براي ايجاد و تکميل سيستم‌هاي هيبريدي با توانايي و کارايي مضاعف در زمينة طراح‌هاي تبديلي انرژي خورشيدي احتياج به تلاش‌ها و فعاليت‌هاي زيادي است.
 

شکل 1. روش‌هاي استفاده از نانولوله‌هاي کربني در پيل‌هاي خورشيدي فوتوشيميايي به‌وسيلة: (چپ) برانگيختگي مستقيم نانولوله‌هاي‌کربني و (راست) برانگيختگي ساختارهاي تجمع نور که نانولوله‌هاي کربني روي آنها ثابت شده‌اند. الکترون- حفره‌هاي ايجادشده به‌وسيلة القاء فوتوني به‌صورت h وe نشان داده شده‌است. يکي از حامل‌هاي بار روي سطح الکترود جمع مي‌شود و ديگري با اکسيد شدن (O) يا احيا شدن (R) توسط زوج اکسايش- کاهش موجود در الکتروليت، از سطح الکترود پاک مي‌شود.
 

شکل 2. سوسپانسيون نانولوله‌هاي تک‌ديواره در THF به‌صورت رسوب فيلمي نازک روي الکترود رساناي شيشه‌اي OTE در ميدان dc پايين (کمتر از ‍100V/Cm) و يا رسوب نانولوله‌هاي تک‌ديواره به‌صورت كلاف هاي خطي بر سطح الکترود در ميدان dc بالا قابل رؤيت است.
 

شکل 3. تصاوير SEM از فيلم رسوب‌داده‌شدة الکتروفورتيک (a): نانولوله‌هاي تک‌ديواره (b): نانولوله‌هاي stacked - cup
 

شکل4. نمايي از چگالي حالت‌ها در يک نانولوله کربني. حفره‌هاي ايجادشده به‌وسيله فوتون در سطح الکترود محصور مي‌شوند که خود باعث ايجاد جريان در پيل فوتوالکترو شيميايي مي‌شود. C1 و C2 مربوط به لاية هدايت و V1 وV2 مربوط به لاية ظرفيت هستند. h وe نيز حفره و الکترون ايجادشده در اثر تحريک نوري نانولوله‌هاي تک‌ديواره هستند.
 

شکل 5. طيف جذب انتقالي زمان ثابت براي سوسپانسيون نانولوله‌هاي تک‌ديواره در THF با استفاده از پالس ليزري 387 نانومتر با پهناي 150 فمتوثانيه و 0=t∆.
 

شکل 6. جريان فوتوني (a) و ولتاژ فوتوني (b) سيکل هاي قطع- وصل براي فيلم برانگيخته‌شدة OTE/SWNT به‌وسيلة نورمرئي (P~100mW/Cm2 و 400nm< ) الکتروليت شامل 5/0 مول LiI و 0.01 مول از I2 در استونيتريل است و الکترود شمارنده (CE) از پلاتين تشکيل شده‌است.
 

شکل 7. طيف حرکتي جريان فوتون‌ها در الکترود (a) OTE/SWNT و OTE/SnO2/SWNT که نشان‌دهندة ميزان بازده IPCE در طول موج‌هاي القايي متفاوت است. الکترود شمارنده از جنس پلاتين و الكتروليت شامل 5/0 مول LiI و 0.01 مول از I2 در استونيتريل است. در نمودار ضميمه‌شده طيف جذبي فيلم نانولوله‌هاي تک‌ديواره که به‌وسيلة رسوب روي الکترودهاي OTE و OTE/SnO2 به وجود آمده‌است نشان داده شده‌است. خط (c) فقط الکترود OTE است. براي تعيين IPCE از فرمول زير استفاده شده‌است:100 (isc/Iinc / = که Isc جريان فوتوني مدار کوتاه و Iinc شدت نور گسيل‌شده است.
 

شکل 8. طيف حرکتي جريان فوتوني براي الکترود OTE/SnO2/SCCNT a) تحت پتانسيل باياس 2/0 ولت بر اساس SCE و b) بدون هيچ پتانسيلي. نمودار ضميمه‌شده نشان‌دهندة جريان فوتوني مدار کوتاه (ISC) براي الکترودهاي: OTE/SnO2/SCCNT تحت پتانسيل با ياس 2/0 ولت بر حسب SCE و OTE/SnO2/SCCNT بدون هيچ پتانسيلي و OTE/TiO2/SCCNT بدون هيچ پتانسيلي. شکل سمت راست نشان‌دهندة جداسازي بارها در فيلم SCCNT و انتقال الکترون به سطح الکترود است. همچنين تصوير SEM از فيلم SCCNT نشان داده شده‌است (توان ورودي معادل78mW/Cm-2 و 400nm< است).
 

شکل 9. تشريح انتقال تصادفي حامل‌هاي بار در فيلم‌هاي نيمه‌هادي مزوپور بر حسب جهت انتقال بار در نانولوله‌ها در ساختارهاي هيبريدي تشکيل‌شده.
 

شکل 10. ميزان بازده IPCE براي الکترود OTE/SWNT/CdS. نمودار ضميمه شده نشان‌دهندة تفاوت جذب بين OTE/SWNT/CdS و فيلم نانولوله‌هاي تک‌ديواره خالص است.
 

شکل11
 

 a) ساختار مولکولي پوفيرين- پروتونه نانولوله‌هاي تک‌ديواره  با برهم‌کنش‌هاي π -π؛

b) تصاوير TEM ساختارهاي ميلهمانند؛

c) طيف حرکتي جريان فوتوني براي الکترود (OTE/SnO2/SWNT- H4P2+)

 با

a) با کاربرد پتانسيل باياس 1/0 ولت برحسب SCE ؛

b) با کاربرد پتانسيل باياس 2/0 ولت بر حسب SCE ؛

c) بدون به کارگيري پتانسيل باياس

الکتروليت هم شامل 5/0 مول Nal و 01/0 مول  I2 در استونيتريل است.

الکترود مورد نظر (OTE/SnO2/SWNTS-H4P2+) شامل يک ميلي گرم SWNT و 2/0 ميلي مول H4P2+ است.

منبع:سایت نانو
oliver بازدید : 65 شنبه 28 اسفند 1389 نظرات (0)
يکي از پرکاربردترين ساختارهاي مورد بحث در فناوري نانو که به عرصه علوم زيستي وارد شده‌است، نانولوله‌هاي کربني هستند. اين نانوساختارها، به‌جهت بهره‌مندي از ويژگي‌هاي منحصربه‌فرد فيزيکي و شيميايي بالقوه، از توانايي‌هايي براي استفاده در حسگر‌هاي زيستي، حمل و نقل مولکولي، جستجوي الکتروشيميايي نمونه‌هاي بيولوژيک، داربست بافتي، فرستنده سيگنال‌ به سلول‌ها و روش‌هاي تشخيصي برخوردارند. اما پيش از به‌کارگيري نانولوله‌هاي کربني در موجودات زنده، بايد از سازگاري اين ساختارها در بافت زنده مطمئن شد. به اين منظور پژوهش‌هاي زيادي صورت گرفته‌است که تا حدودي سميت نانولوله‌هاي کربني و عوامل مؤثر بر آن مثل دوز، ساختمان، دنباله‌هاي شيميايي، سطح فعال و خلوص را مشخص نموده‌است. دانشمندان تاکنون توانسته‌اند از نانولوله‌هاي کربني در حسگرهاي پروتئيني، ناقل‌هاي پروتئيني، ميکروسکوپ‌ها، داربست بافتي سلول استخواني و عصبي، کانال‌هاي مولکولي و فرستنده سيگنال به سلول‌هاي عصبي استفاده کنند.
1. معرفي نانولوله‌هاي کربني
1-1. تاريخچه
 
به نظر مي‌رسد اولين رشته‌هاي در مقياس نانو در سال 1970 ميلادي توسط Marinobu Endo از دانشگاه اورلئان فرانسه تهيه شد. اين رشته‌ها هفت نانومتر قطر داشتند و با روش رشد توسط بخار تهيه شده بودند [1]. با اين حال امروزه نام ايجيما از آزمايشگاه NEC در تسوکوبا به‌عنوان اولين کسي که توسط HR-TEM در سال 1991 موفق به مشاهده نانولوله‌‌ها شد، در صدر محققان اين رشته‌ باقي مانده‌است [1و2و3و4]. در همين زمان و به طور مستقل در مسکو نيز دانشمندان موفق به کشف ريز‌لوله‌هايي شده بودند که البته نسبت طول به قطر آن کمتر از يافتة ايجيما بود. روس‌ها نام اين ماده را Barrelense گذاردند [1]. آنچه ايجيما موفق به مشاهده آن شده بود نانولوله چند لايه بود و وي به فاصله دو سال موفق به مشاهده نانولوله تک‌لايه نيز گشت. گروه رايس در 1996 موفق به ساخت دسته‌هاي موازي از نانولوله تک‌لايه شدند که راه را براي تحقيقات بيشتر روي فيزيک کوانتوم تک بعدي باز کرد [1].
1-2. ساختار
نانولوله بر اساس ساختمان گرافيت بنا مي‌شوند. گرافيت از لايه‌هاي مجزايي متشکل از اتم‌هاي کربن تشکيل شده‌‌است که به‌صورت واحد‌هايي شش‌ضلعي که در شش رأس آن اتم کربن قرار دارد آرايش يافته‌اند. قطر نانولوله بين يک تا دو نانو‌متر و طول آن گاه تا چند ميکرومتر نيز مي‌رسد. انتهاي هر دو سوي نانولوله‌ها مي‌تواند با نيمه‌‌اي از يک فولرين مسدود ‌باشد يا نباشد [1]. و لذا مي‌تواند در انتهاي خود علاوه بر اجزاي شش‌ضلعي داراي اجزاي پنج‌ضلعي نيز ‌باشد[3]. اما مهم‌‌ترين ويژگي که در تعيين خصوصيات نانولوله‌ها نقش بازي مي‌کند، با عنوان Chirality يا پيچش شناخته مي‌شود [1و2و4و5].
از ديگر ويژگي‌هاي ساختاري نانولوله‌ها حضور آنها به دو فرم نانولوله چند لايه با نام اختصاري MWNT و نانولوله‌هاي تک‌لايه با نام اختصاري SWNT است؛ هر يك از اين انواع داراي کاربرد‌هاي متفاوتي هستند.
 
1-3. روش‌هاي توليد
روش‌هاي توليد نانولوله‌هاي کربني به‌اختصار شامل موارد زير است[2]:
• تبخير يا سايش ليزري (Laser Vaporization/ablation)؛
• رسوب‌‌دهي شيميايي بخار به کمک حرارت (CVD)؛
• رسوب‌دهي شيميايي بخار به کمک پلاسما (PECVD)؛
• رشد فاز بخار؛
• الکتروليز؛
• سنتز شعله.
 
1-4. خصوصيات فيزيکي و شيميايي
نانولوله‌ها علي‌رغم برخورداري از قطر بسيار کم، استحکام کششي بالايي در حدود صد گيگاپاسکال دارند [2و5]. از ديگر خصوصيات نانولوله‌ها وجود پيوند‌هاي واندروالس بين اتم‌ها(و لذا توانايي بسيار پايين آنها براي چسبيدن به يکديگر)، خواص الکتريکي منحصر به فرد (نانولوله فلزي و نيمه هادي) [1و2و3و5]، رسانايي تنها در جهت طولي [1و2]، رسانايي حرارتي و خاصيت نشر ميداني [2و6و7] است. خاصيت نشر ميداني در ساختار‌هايي که داراي نسبت طول به قطر بالا (بزرگ‌تر از هزار) ، داراي رأس اتمي تيز، ثبات بالاي حرارتي و شيميايي و هدايت بالاي الکتريکي و گرمايي باشند، ديده مي‌شود [7و8].
 
2. ويژگي‌هاي زيستي نانولوله‌هاي کربني
با وجود خصوصيات متنوع نانولوله‌ها، دور از ذهن نيست که کاربرد‌هاي متنوعي نيز داشته باشند. در يک تقسيم‌بندي ساده مي‌توان بر‌هم‌کنش‌هاي زيستي نانولوله‌ها را از دو بعد درون‌سلولي و برون‌سلولي مورد بررسي قرار داد. به طور کلي مهم‌ترين عناوين کاربرد‌هاي نانولوله‌ها از ديد بيولوژيک عبارتند از:
• حسگر‌هاي زيستي؛
• حمل و نقل ملکولي؛
• جستجوي الکتروشيميايي نمونه‌هاي بيولوژيک؛
• داربست بافتي؛
• فرستنده سيگنال‌ به سلول‌ها؛
• روش‌هاي تشخيصي.
اما يکي از مهم‌ترين مباحث در راه استفاده از کارايي‌هاي نانولوله در بافت زنده، سازگاري زيستي آن است. لذا ابتدا مطالعات صورت گرفته در اين زمينه را مرور مي‌كنيم.
 
2-1. ساز‌گاري زيستي
جلب نظر دانشمندان به سازگاري زيستي نانولوله‌ها و اثرات مضر احتمالي آنها بر سلول‌ها، به اين واقعيت برمي‌گردد که در سال‌هاي اخير با افزايش روز‌ افزون کاربرد‌هاي نانولوله‌ها‌ در صنعت و حضور بيشتر آنها در محيط، ارتباط معنا‌‌داري بين آنها و بيماري‌هايي از جمله بيماري‌هاي تنفسي [9] و پوستي [10] پيدا شده‌است. اين امر مراکز علمي و تحقيقاتي را بر آن داشته‌ است تا به بررسي اساسي اين تأثيرات، يعني تأثير نانولوله بر سلول بپردازند. علي‌رغم مطالعاتي که در ابتدا نشان مي‌داد که نانولوله و هم‌خانواده‌هاي آن تأثير چنداني بر مورفولوژي، رشد و تکثير سلولي ندارند [11]، امروزه مشخص شده‌است که شاخص‌هايي چون ابعاد فيزيکي، مساحت، دوز، نسبت طول به قطر، زمان، خلوص و وجود عوامل شيميايي متصل به سطح، هر يک به نوبه خود در خاصيت سيتوتوکسيتي نانولوله مؤثرند [12و13و14و15]. هر يک از مطالعات صورت گرفته روي يکي از متغير‌هاي مذکور تمرکز بيشتري دارند، اما به نظر مي‌رسد که دوز، خلوص و حضور دنباله‌هاي شيميايي متصل به سطح از موارد مهم‌تر باشند.
مطالعات نشان داده‌اند که آستانه اثر کشندگي نانولوله براي نانولوله‌هاي چند ديواره و تک‌ديواره ، حدود 06/3 ميکروگرم در ميلي‌ليتر است که اين رقم در برابر C60 (فولرين) که تا 226 ميکروگرم در ميلي‌ليتر نيز اثر کشندگي براي سلول ندارد، رقمي قابل توجه است [16]. آخرين و مهم‌ترين مقاله منتشر شده در اين زمينه توسط انجمن شيمي آمريکا، در مقايسه‌اي بين سيتوکسيتي MWCNT، SWCNT، کوارتز و C60، به‌ترتيب توان کشندگي اين مواد براي سلول را به اين شکل بيان مي‌کند:
 

C60 < کوارتز < SWCNT > MWCNT

نکته جالب آن است که اگر چه با افزايش دوز نانولوله در محيط کشت، اثر کشندگي آن نيز افزايش مي‌يابد، اما اين ارتباط، خطي و منظم نيست [15]. نکته ديگر در مورد اثر دوز اينکه نانولوله در دوز‌هاي پايين اثري عکس اثرات آن در دوز‌هاي بالا دارد.
بررسي‌ها نشان مي‌دهد که نانولولة خالص داراي اثرات سمي بيشتري نسبت به نوع ناخالص آن است[12]. اما مهم‌تر از خلوص، اثر عوامل شيميايي بر روي سطح نانولوله است که موجب کاهش اثرات سمي آن مي‌شود [13]. اضافه نمودن عوامل شيميايي بر روي سطحِ نانولوله را فعال سازي (Functionalization) مي‌گويند که به نوبه خود موجب تسهيل به‌کارگيري نانولوله در صنايع مي‌گردد.
برخي از مطالعات به نحوة اثر نانولوله در سلول و علت مستقيم مرگ سلولي ناشي از آن اختصاص دارند. به طور کلي سلول‌ها در مواجهه با نانولوله، پاسخ‌‌هاي گسترده و بعضاً متناقضي از خود نشان مي‌دهند. اين پاسخ‌هاي سلولي عبارتند از: فعال‌سازي ژن‌هاي مؤثر در حمل و نقل سلولي، متابوليسم، تنظيم سيکل سلولي و رشد سلولي پاسخ‌هاي استرسي و اکسيد‌اتيو، توليد و ترشح پروتئين از سلول، توقف رشد سلولي و در نهايت آپوپتوز و نکروز [10و14و15و17].
طبق مطالعات صورت گرفته، نانولوله‌ها در دوز‌هاي پايين‌تر موجب افزايش رشد و متابوليسم سلولي و در دوز‌هاي بالاتر موجب واکنش‌هاي التهابي و پاسخ‌هاي ايمني سلولي، مشابه وضعيتي که در برابر تهاجم يک عفونت وريدي از خود نشان مي‌دهد، مي‌شوند [15]. در واقع مرگ سلول‌ها در مواجهه با نانولوله‌ها مشابه ديگر موارد مرگ سلولي، ناشي از تشکيل راديکال‌هاي آزاد و عوارض ناشي از آن، تخليه مواد آنتي‌اکسيدان و up-regulation برخي از ژن‌ها و down-regulation برخي از ژن‌‌هاي ديگر است [10و14و17].
اثرات نانولوله بر روي بيان ژني که تا به حال کشف شده‌است عبارت است از: up-regulation بيان ژن‌هاي مؤثر در سيکل سلولي مثل P38, CdC37, CdC42, hrk, P57, bax, P16 و Down-regulation بيان ژن‌هاي مؤثر در سيکل سلول مثل Cdk2 و Cdk4، Cdk6 و Cyclin D3 و نيز down-regulation بيان ژن‌هاي مرتبط با سيگنال‌هاي سلولي مثل pcdha9, ttk, jak1, mad2 و erk. همچنين موجب القاي down-regulation بيان پروتئين‌هاي دخيل در اتصالات سلولي مانند لامينين، فيبرونکتين، کادهرين و FAR و کلاژن نوع چهار مي‌شوند[14و17].
از اين ميان دانشمندان مهم‌ترين تأثير نانولوله‌ها را در سيکل ميتوز در مرحله G1 مي‌دانند و توقف سلول در فاز G1 را عامل اصلي آپوپتوز قلمداد مي‌کنند[17].
 
2-2. نانولوله‌هاي کربني: ابزار‌هاي قدرتمند زيستي
چنانچه عنوان شد، با در نظر گرفته خطرات احتمالي نانولوله‌ها براي سلول و بافت، اين ساختار‌هاي نانويي بالقوه از کاربرد‌هاي فراواني در موجودات زنده برخوردارند. اگرچه ترس از عدم سازگاري زيستي موجب کند شدن روند تحقيقات در اين زمينه شده‌است، با اين حال تاکنون دانشمندان به نتايج قابل قبولي نيز دست يافته‌اند که در ادامه به آنها اشاره مي‌شود.
 
2-2-1. حسگر‌هاي زيستي
هرگونه تغييري در ساختمان و اجزاي نانولوله‌ها موجب تغيير در قدرت هدايت الکتريکي آنها خواهد شد. دانشمندان دريافته‌اند که فعال‌سازي نيز متناسب با خصوصيات مولکول پيوند شده، موجب تغييراتي در هدايت الکتريکي و تابش نور از نانولوله مي‌شود که منحصر به همان مولکول است[18]. تاکنون مطالعاتي روي پروتئين‌ها، کربوهيدارت‌ها و آنتي‌بادي‌هاي مختلف صورت گرفته‌است که همگي تأييدي بر اين فرضيه بوده‌اند[18و19و20]. لذا متصور خواهد بود که با حضور هر نوع مولکول در محيط‌ حاوي نانولوله و اتصال به آن مي‌توان فرکانس الکتريکي يا طول نوراني متفاوتي را ثبت کرد و به حضور آن ماده در محيط پي برد.
2-2-2. حمل و نقل ملکولي
تاکنون مطالعاتي روي توانايي نانولوله‌ها در جابه‌جا نمودن مولکول‌ها صورت گرفته‌است. اين بررسي‌ها غالباً به دو دسته تقسيم مي‌شوند: مطالعاتي که به بررسي عبور مولکول‌ها از درون نانولوله [20] و جاگذاري مولکول‌ها درون آنها [29] اختصاص دارند و مطالعاتي که بر پايه اتصال مولکول‌ها به سطح نانولوله و انتقال از اين طريق بنا شده‌اند[21]. در نوع اول دانشمندان موفق به مشاهده عبور مولکول آب، +H، برخي از يون‌ها و بعضاً پليمر‌ها از درون نانولوله شده‌اند[20]، آنها با جايگذاري داروهاي ضد سرطان (مثل سيس پلاتين) درون نانولوله‌ها موفق به انتقال آنها به اطراف سلول و آزادسازي آهستة آنها از درون نانولوله شده‌اند[29]. در نوع ديگر عموماً نقل و انتقال پروتئين‌ها توسط نانولوله‌ها بررسي شده‌است. اين مطالعات نشان مي‌دهند که با فعال سازي نانولوله توسط بنيان اسيدي مي‌توان قابليت اتصال اين مواد به پروتئين‌ها را افزايش داد و به اين طريق انتقال پروتئين‌ها به درون سلول را تسهيل کرد[21]. البته اين توانايي نانولوله‌ها به اندازه پروتئين‌ نيز بستگي دارد و در اندازه‌هاي بزرگ‌تر اين توانايي از نانولوله صلب مي‌شود. در همين رابطه مي‌توان توانايي نانولوله را براي انتقال ژن‌ها به درون سلول نيز ذکر کرد [22]. که البته مطالعات در اين زمينه همچنان ادامه دارد. چنانچه بتوان از نانولوله به عنوان ناقل ژني استفاده کرد، مي‌توان آينده درخشاني را براي ژن‌درماني و روش‌هاي مشابه متصور بود.
 
2-2-3. داربست بافتي
اخيراً توجه دانشمندان به اين قابليت نانولوله‌ها جلب شده‌است که همانند داربست‌هاي طبيعي بافتي محتوي کلاژن، مي‌توانند به عنوان داربست (Scaffold) براي رشد سلول‌هاي روي آنها مورد استفاده قرار بگيرند. احتمالاً ايده‌ اوليه از آنجا منشأ مي‌گيرد که نانولوله‌ها هنگام توليد به صورت رشته‌هايي درهم آرايش مي‌يابند که به آن فرم ماکاروني اطلاق مي‌شود. اين مشابه وضعيت کلاژن‌ها در مايع خارج سلولي است. نام ديگر اين آرايش bucky paper است [19].
دانشمندان دريافته‌‌اند که SWCNTهاي بافته نشده (non woven) داراي خاصيت داربستي بيشتري نسبت به ديگر انواع هستند. در اين حال قابليت تکثير و چسبندگي سلولي نيز افزايش چشمگيري دارد [23]. مهم‌ترين دستاورد محققان در اين زمينه، کشت استئوبلاست‌ها روي نانولوله‌هاست که به‌تازگي در مقاله‌اي توسط محققان دانشگاه کاليفرنيا در سال 2006 منتشر شده‌است و توجهات زيادي را به خود جلب کرده‌است. اين يافته راه را براي به کار‌گيري نانولوله‌ها در ترميم آسيب‌هاي سلولي باز مي‌کند [24]. بيش از اين نيز اتصالات محکم استئوبلاست‌ها به داربست نانولوله‌اي توسط filopodiaهاي شکل‌گرفته در حين کشت به اثبات رسيده بود [25]. با اين حال مطالعاتي نيز نشان مي‌دهند که اتصالات بين سلول و داربست نانولوله سست بود و سلول‌ها قادر به نفوذ به داربست نيستند[8].
يافته ديگري که توسط دانشگاه کاليفرنيا اعلام شده‌است، احتمال به‌كار‌گيري نانولوله‌ها در ترميم ضايعات نخاعي است. در اين حال حضور نانولوله‌ها در محيط موجب هدايت رشد آکسوني مي‌شود‌[26].
2-2-4. ديگر کاربرد‌ها
ديگر کاربرد‌هايي که امروزه مطالعاتي بر روي آنها در حال انجام است عبارتند از: الف) فرستادن سيگنال به سلول‌هاي عصبي [27] که در آن همزمان با ايجاد داربست مناسب براي رشد سلول‌هاي عصبي (توسط فعال‌سازي مناسب نانولوله‌ها) مي‌توان سيگنال‌هاي الکتريکي را به سلول عصبي فرستاد؛ ب) روش‌هاي تشخيصي زيستي [28] که اولين مرحله اين کاربرد بر روي مالاريا و تشخيص گلبول‌هاي قرمز آلوده به اين تک ياخته Plasmodium falciparum صورت گرفته‌است و در حقيقت ميکروسکوپ AFM بر اين پايه عمل مي‌کند؛ ج) جستجوي الکتروشيميايي [20] که در واقع از خاصيت قطبيت‌پذيري نانولوله‌ها استفاده و آن را به ابزاري تحت عنوان «ion-nanotube terahertz osillator» تبديل کرده‌است. در اين حالت يون مورد نظر (مثلاً +K) با گيرافتادن در دالان نانولوله با فرکانس بالا شروع به حرکت به دو سوي نانولوله مي‌کند. حاصل اين فرايند ايجاد جريان الکتريکي متناوب با فرکانس بالا خواهد بود که از خارج قابل اندازه‌گيري است.
 
3. جمع بندي
نانولوله‌هاي کربني به جهت قدرت الاستيسيتة بالا و در عين حال استحکام فوق العاده، به عنوان داربست سلولي براي رشد سلول‌هاي استخواني و عصبي مورد استفاده قرار گرفته‌اند. به علاوه در عين حال که سلول‌ها روي شبکه‌اي تور مانند از اين مواد شروع به رشد و تکثير مي‌کنند، دانشمندان توانسته‌اند از قابليت هدايت ويژه الکتريکي نانولوله‌هاي کربني استفاده و از آنها به عنوان راهي براي فرستادن پيام به سلول‌ها استفاده کنند. اين يافته‌ها تداعي‌کنندة نياز مبرم علم پزشکي و مخصوصاً شاخه‌هاي جراحي پلاستيک و پيوند اعضا، به رشد و تکثير و پرورش سلول‌هاي مورد نظر در خارج از بدن و سپس انتقال آنها به بدن است. در اين فرايند کاستن از رد شدن بافت پيوندي توسط دستگاه ايمني بدن از جايگاه ويژه‌اي برخوردار است که تحقيقات چند سال اخير روي سازگاري زيستي نانولوله‌هاي کربني آن را نشان داده‌است. با تغييراتي در ساختار و ترکيبات اين مواد مي‌توان آنها را به ساختمان‌هايي سازگار با دستگاه ايمني بدن تبديل کرد. به‌علاوه اتصال محکم سلول‌ها به اين ساختارها مشکل ديگر پيوند اعضا، يعني سستي سلول‌ها پس از پيوند را مرتفع خواهد ساخت.
همچنين قابليت ذخيره‌سازي مولکول‌ها در داخل نانولوله‌هاي کربني، درهاي تازه‌اي را به روي حمل و نقل مواد حاجب و داروها در داخل بدن گشوده‌است؛ چنانچه هر دوي اين کاربردها در خارج از بدن انسان به اثبات رسيده‌اند. مشابه اين کاربرد، توانايي نانولوله‌هاي کربني فعال‌سازي شده براي اتصال به پروتئين‌ها و انتقال آنها به داخل سلول است که به تازگي نظر دانشمندان را به خود جلب نموده‌است.
از مهم‌ترين و اولين کاربردهاي نانولوله‌هاي کربني در محيط‌هاي زنده، توانايي آنها براي اتصال به مولکول‌هاي آلي مختلف و امکان جستجوي آن ماده بر اساس تغييرات هدايت الکتريکي نانولوله بوده‌است. اين کاربرد، از برجسته‌ترين تقابل‌هاي علم الکترونيک و بيولوژي در بهره‌برداري از فناوري‌نانو بوده‌است.
با توجه به آنچه گذشت و طبق اطلاعات موجود از امکانات حال حاضر کشورمان، به نظر مي‌رسد که با برقراري ارتباط بيشتر بين محققان علوم زيستي و علوم مهندسي، هيچ‌يک از اين کاربردها هم اکنون دست نايافتني نيستند. در حقيقت ذکر چنين کابردهايي از نانولوله‌هاي کربني که تنها يک نانوذره از ميان هزاران نانوذرة موجود است، هدفي به جز ايجاد انگيزه بيشتر براي ورود مهندسان علوم الکترونيک، مواد و شيمي به حوزه علوم زيستي و بالعکس آشنايي بيشتر محققان علوم زيستي با بعد فني و مهندسي فناوري نانو نخواهد داشت. منبع:سایت نانو
oliver بازدید : 53 شنبه 28 اسفند 1389 نظرات (0)

مقدمه

رشد روزافزون جمعيت کشورها و  فعاليت‌هاي صنعتي و کشاورزي از يک سو و رعايت نكردن الزامات زيست‌محيطي از سوي ديگر، سبب شده‌است تا در چند دهة اخير، مقادير زيادي از آلاينده‌ها مانند هيدروکربن‌هاي آلي کلردار به‌واسطة عواملي نظير دفع نامناسب پساب‌ها و ضايعات مراکز صنعتي و شهري، استفادة وسيع از آفت‌کش‌ها، علف‌کش‌ها و. . . ، به منابع آب‌هاي زيرزميني وارد و موجب کاهش کيفيت آب شوند [1]. حلال‌هاي آلي کلردار مثل تتراکلرواتن، تري‌کلرواتن، دي‌کلرواتن و وينيل‌کلرايد از جمله رايج‌ترين آلاينده‌ها هستند. ترکيبات آلي کلردار، که بسيار سمي و غيرقابل تجزية زيستي هستند، جزء شايع‌ترين و متداول‌ترين آلاينده‌هاي آب‌هاي زيرزميني به شمار مي‌روند [2]. ترکيبات آلي کلردار ضمن ايجاد اثرات سمي بر دستگاه اعصاب، خاصيت سرطان‌زايي نيز دارند [3].

از اواسط سال 1990، پيشرفت‌هاي مهمي در تبديل آلاينده‌هاي آلي کلردار به محصولات بي‌ضرر نظير متان، اتان، با استفاده از فلزات ظرفيت صفر مثل قلع، روي، پالاديوم و آهن صورت گرفت که آهن رايج‌ترين اين فلزات است. در اين فناوري ابتدا از براده‌هاي آهن و سپس از کلوئيدهاي آهن در اندازة ميکروني استفاده شد [4].

مطالعات وسيع در 15 سال اخير ثابت کرده‌است که آلاينده‌هاي محيط‌زيست مي‌توانند از طريق اکسيداسيون آهن ظرفيت صفر احيا شوند. بازده سميت‌زدايي، قيمت پايين و بي‌خطر بودن آهن، باعث توسعة يک روش نوين در احياي آلايندهاي محيط زيست به ويژه در آب‌هاي زيرزميني شده‌است [4].

عموماً واکنش بين ترکيبات آلي کلردار (CxHyClz) و آهن در محلول آبي به‌صورت زير بيان مي‌شود.

 (1)     

که در آن آهن به عنوان عامل کاهنده در حذف کلر رفتار مي‌کند. اين واکنش مشابه فرايند خوردگي آهن است که در تغيير شکل آلاينده‌هاي کلردار مفيد است [5].

شکل (1) تصوير TEM نانوذرات آهن [9]

  فناوري استفاده از نانوذرات آهن در احياي آلاينده‌هاي کلردار حرکت جديدي است که نسبت به روش‌هاي قبلي بسيار اقتصادي‌تر و کارامدتر است. زماني که اندازة ذرات آهن به مقياس نانو کاهش مي‌يابد تعداد اتم‌هايي که مي‌توانند در واکنش درگير شوند افزايش، و در نتيجه سرعت واکنش‌پذيري بيشتر مي‌شود. اين امر موجب مي‌شود که نانوذرات آهن قدرت انتخاب‌پذيري بيشتري نسبت به براده‌هاي آهن داشته باشند [6].

اگر چه استفاده از نانوذرات آهن به جاي ميکرو و يا براده‌هاي آهن در احياي آلاينده‌ها بسيار مؤثر بود و حتي در اين فناوري موفق به احياي پرکلرات‌ها شدند که با روش‌هاي قبلي امکان‌پذير نبود، ولي مشاهده شده‌است که در بعضي موارد، محصولات واکنش به مراتب سمي‌تر از ماده اوليه هستند. به عنوان مثال از احياي تري‌کلرواتيلن مي‌تواند وينيل‌کلرايد تشکيل شود که بسيار سمي است [7 و2].

درمسير توسعة فناوري‌نانوذرات آهن در اصلاح آب و خاک، گروه ژنگ (zhang)  نانوذرات دوفلزي آهن- پالاديوم را در سال 1996 سنتز كردند. پس از آن در روش‌هاي مشابهي از فلزات کاتاليزوري ديگر مثل پلاتين، نقره، نيکل، کبالت و مس براي تهيه نانوذرات دو فلزي با آهن استفاده شد. بررسي نانوذرات دوفلزي نشان مي‌دهد که سرعت و بازده سميت‌زدايي اين ذرات بيشتر از آهن است. حضور يک عامل کاتاليزوري باعث مي‌شود که سرعت واکنش هالوژن‌زدايي بيشتر و از تشکيل محصولات جانبي سمي جلوگيري شود [8].

 روش آزمايشگاهي

سنتز نانوذرات آهن از ابتکاراتي است که اولين بار در سال 1996 توسط ژنگ انجام شد. در اين روش، آهن فريک به‌وسيله بوروهيدرايد سديم طبق واکنش زير احيا مي‌شود [9]:

 (2) 

براي تهيه نانوذرات دوفلزي آهن- پالاديوم، نانوذرات آهن تازه‌تهيه‌شده به محلولي از اتانول و استات پالاديوم اضافه مي‌شوند. اين امر طبق واکنش زير منجر به ته‌نشيني پالاديوم بر سطح آهن مي‌شود:

 (3) 

در اين روش از آهن به عنوان فلز پايه و از از پالاديوم به عنوان فلز کاتاليزگر استفاده مي‌شود. تصاوير ميکروسکوپ الکتروني عبوري نانوذرات آهني که به اين روش سنتز شدند، نشان مي‌دهند که بيشتر از 90 درصد ذرات، قطري در حدود يک تا صد نانومتر دارند [9].

 سازوکار نانوذرات آهن

بررسي واکنش‌هاي احياي نانوذرات آهن در محلول‌هاي آبي نشان مي‌دهد که آهن فلزي، يون فرو و هيدروژن گازي احياکننده‌هاي اصلي در محيط هستند. احياي آلاينده‌ها در سطح آهن مي‌تواند از طريق انتقال الکتروني و يا تشکيل هيدروژن انجام شود [10].

 بررسي سازوکار نانوذرات دوفلزي Ni-Fe نشان مي‌دهد كه همزمان با قرارگيري ذرات دوفلزي Ni-Fe در يک محلول آبي، يک پيل گالواني تشكيل مي‌شود كه Fe به فلز کاتاليزور الکترون مي‌دهد و Ni به‌وسيلة آهن، حفاظت کاتدي مي‌شود. زماني که آهن اکسيد مي‌شود، با آب تشکيل هيدروکسيد و يا اکسيد آهن مي‌دهد و پروتون‌ها روي سطح Ni به اتم‌هاي هيدروژن و مولکول هيدروژن تبديل مي‌شوند [2]. براساس اين سازوکار، واکنش هالوژن‌زدايي از طريق هيدروژن جذب‌شده بر روي کاتاليزور Ni-Fe به‌سرعت انجام مي‌شود [8‍].

  (4) 

  (5) 

 ترکيب هالوژن‌دار روي سطح ذرات Ni-Fe جذب و پيوند C-Cl شکسته مي‌شود. سپس، اتم کلر جايگزين هيدروژن مي‌گردد (شکل 2) [2].

شکل (2) تصويري از سازوکار واکنش هالوژن زدايي يک ترکيب آلي کلردار با نانوذرات Ni-Fe ] 2[

  با توجه به مطالب فوق، سازوکار نانوذرات دوفلزي در واکنش‌هاي هالوژن‌زدايي موجب تشکيل هيدروژن مي‌شود. در حالي‌که ذرات تک‌فلزي و همچنين مخلوط فيزيکي دوفلز عملکرد متفاوتي دارند. اين موضوع از طريق اندازه‌گيري ميزان هيدروژن توليدشده در آب به‌وسيلة نانوذرات آهن، نانوذرات نيکل، نانوذرات دوفلزي Ni-Fe و مخلوط فيزيکي نانوذرات آهن و نانوذرات نيکل ثابت شده‌است.

شکل (3) مقايسة مقدار هيدروژن توليدشده از واکنش نانوذرات دوفلزي، تک‌فلزي و مخلوط آن‌ها با آب. مربع مربوط به نانوذرات آهن، دايره‌ مربوط به نانوذرات نيکل، لوزي‌، مخلوط فيزيکي نانوذرات آهن و نانوذرات نيکل و مثلث مربوط به نانوذرات Ni-Fe است [2].

 مطابق شکل (3) ميزان هيدروژني كه نانوذرات دوفلزي Ni-Fe توليد مي‌كند، بيشتر از بقية ذرات است و اين مي‌تواند به‌دليل تماس الکتروني بين دو فلز آهن و نيکل باشد [2].

شکل (4) ميزان گاز هيدروژن (molμ) که به‌وسيلة نانوذرات Ni-Fe در آب و در يک دورة زماني طولاني توليد شده‌است [2]

 

شکل (4) نشان مي‌دهد که سرعت تشکيل هيدروژن در ابتداي واکنش به‌شدت افزايش يافته و با گذشت زمان، سطح آهن غيرفعال و سرعت واکنش کند مي‌شود [2].

محصولي که در ابتدا از کلرزدايي تري‌کلرو‌اتيلن به‌وسيلة نانوذرات Ni-Fe به دست مي‌آيد، شامل اتيلن و بوتن است که با پيشرفت واکنش، آلکان‌هاي زنجيره‌اي و شاخه‌دار (C1-C8) علاوه بر اولفين‌ها تشکيل مي‌شوند. پس از يک دورة زماني طولاني، آلکن‌ها به طور کامل احيا مي‌شوند و آلکان‌هايي با تعداد کربن زوج، مثل بوتان، هگزان و اکتان توليد مي‌کنند. محصولات داراي کربن زيادتر به‌علت شکستن پيوند C-C به‌وسيلة کاتاليزور Ni  تشكيل مي‌شوند [2].

 نتيجه‌گيري

مطالعات انجام‌شده بر روي هالوژن‌زدايي ترکيبات آلي کلردار به‌وسيلة آهن، نشان مي‌دهد که مرحله تعيين کننده سرعت، مرحلة انتقال الکترون به مولکول جذب سطحي شده‌است. اين سازوکار بيان مي‌کند که سرعت احياي دي‌کلرو‌اتيلن و وينيل‌کلرايد که پذيرنده الکترون ضعيف‌تري نسبت به تري‌کلرو‌اتيلن هستند، کندتر است. در بررسي تأثير آهن در احياي تري‌کلرو‌اتيلن مشاهده شده‌است که بعضي از محصولات واکنش احيا، مثل وينيل‌کلرايد، مي‌توانند به مراتب سمي‌تر از ترکيبات اوليه‌شان باشند. همان‌طورکه قبلاً بيان شد، واکنش هالوژن‌زدايي آلاينده‌هاي آلي کلردار با نانوذرات دوفلزي از طريق احياي هيدروژن صورت مي‌گيرد. بنابراين، سرعت واکنش احيا به‌وسيله نانوذرات دوفلزي، به مراتب بيشتر از واکنش احيا از طريق انتقال الکتروني است. افزايش سرعت واکنش آلاينده‌ها، از تشکيل محصولات فرعي سمي جلوگيري مي‌کند. همچنين با استفاده از نانوذرات آهن مي‌توان برخي از آلاينده‌هاي بسيار مقاوم مثل پرکلرات را تجزيه کرد.

 اين روش به‌راحتي در شرايط محيطي قابل استفاده است و نياز به فراهم نمودن شرايط خاصي مثل دماي بالا وجود ندارد.

منبع:سایت نانو

oliver بازدید : 58 شنبه 28 اسفند 1389 نظرات (0)
 مقدمه
فناوري cmos که سالها به‌علت برخي مزايا از قبيل توان مصرفي کم، حاشيه نويز بالا و قابليت مجتمع‌سازي در مقياس وسيع فناوري غالب بوده‌است، اکنون با يک چالش جدي روبرو شده‌است. روند دائمي کاهش اندازه نما در فناوري CMOS که باعث افزايش چگالي المانها و سرعت مدارات مي‌شد اکنون به‌انتهاي نقشه راه خود نزديک شده و به‌نظر نمي‌رسد که براي ابعاد زير 10 nm مناسب باشد، در حاليکه طبق پيش بيني ITRS در سال 2020 مي‌بايد طول گيت ترانزيستور‌ها 10 nm باشد. محدوديت‌هاي ذاتي سيليکون ناشي از آثار کوانتم مکانيکي در ابعاد بسيار کوچک و کاهش شديد بازدهي در چنين ابعادي توآم با مشکلات فناوريک، پيچيدگي و هزينه زياد ساخت سبب ايجاد مشکلات جدي براي سازندگان و هزينه زياد براي کاربران خواهد شد. يکي ديگر از مشکلات مهم آن است که در ابعاد نانومتري ترانزيستورها بمراتب سريع‌تراز Interconnect‌ها هستند که باعث عدم کارکرد صحيح مدار خواهد شد. ساخت ترانزيستورهايي با طول گيت چند نانومتر و انجام آلايش در آن ابعاد نيازمند فرآيند‌هاي بسيار دقيق و پرهزينه‌است و ما را به‌اين واقعيت مهم راهنمايي مي‌کند که قانون Moore و VLSI کنوني که مبتني بر نقش نگاري ليتوگرافي ، مدارهاي CMOS و گيت‌هاي بولي است به‌آخر نقشه راه خود نزديک مي‌شوند. مايکروالکترونيک معاصر به‌دنبال راه کارهاي جديدي براي غلبه بر چالش‌هاي موجود است. هم اکنون يک جايگزين عمده مبتني بر نانوالکترونيک براي جايگزين کردن مايکرو الکترونيک پيشنهاد شده‌است: ادوات تک الکتروني يا Single-Electronics. در ادوات تک الکتروني از مولکولهايي که به‌طور خاص طراحي و سنتز شده‌استفاده مي‌شود و در ساخت آن پيشنهاد شده‌از روش پائين به‌بالا استفاده شود. اما مشکل اينجاست که اين ادوات بتنهايي از عهده انجام کارهايي نظير تأمين ولتاژ يا تأمين بهره يا. . . بر نمي‌آيند. دقيقآ به‌همين دليل است که اکنون اين باور که تنها راه رسيدن به‌نانوالکترونيک با کارايي بالا ترکيب ادوات تک الکتروني يا مولکولي با مدارهاي CMOS است به‌گونه‌اي که المانهاي سه پايه ضعف اين ادوات را در تأمين بهره ولتاژ، آدرس دهي و. . . جبران مي‌کنند در حال تقويت‌‌شدن است. پس در نتيجه فناوري CMOS/Nano مطرح شد که در آن قسمت نانو بار محاسباتي را انجام مي‌دهد و قسمت CMOS آدرس دهي، تأمين بهره و بازيابي سيگنال و. . . را به‌عهده دارد.
اما با اين حال هنوز مشکل تنظيمات وجود دارد، که تنظيمات نانوسيمها نسبت به‌يکديگر با crossbar حل شده ولي نسبت به‌قسمت CMOS اين فناوري را دچار چالش کرده و اين فناوري را به‌سمت CMOL (cmos molecular hybrid) هدايت مي‌کند. مزيت اصلي CMOL، سادگي، چگالي و شکل‌بندي جداگانه آن است. تکنولوژي CMOL نيز به‌دليل مشکلاتي که دارد از جمله:
(1) مسئله پيچيدگي و عدم همترازي نانوپين‌هايي که بر روي سطح CMOS هستند.
(2) نامعلوم بودن محل و جايگاه نانوپين ها.
(3) الگوريتم آدرس دهي جديد.
(4) سايز نانوسيمها، که حدود 4. 5nm و با pitch 9nm پيش بيني شده و دور از دسترس قابليتهاي کنوني ليتوگرافي است و طبق ITRS براي سال 2030 است، دچار چالشهاي جدي شده و اين چالشها را در فناوري جديدي که از آن به‌FPNI ياد مي‌شود، برطرف مي‌کند.

2. روش کار
2-1. FPNI
در شکل 1-1 ساختار nanowire crossbar با يک تراشه CMOS نشان داده شده‌است.
 
شکل 1: nanowire crossbar و cmos
مشاهده مي‌شود که نانوسيمها که به‌طور عمود بر يکديگر واقع شده‌اند، با يک فاصله کوچک که آن را يک ابزار قابل شکل‌گيري Antifuse فرض مي‌کنند، جدا شده‌اند.
پين‌هاي فلزي بر روي سطح تراشه از پائين به‌CMOS و از بالا اتصال با نانوسيم‌ها را فراهم مي‌کنند. به‌طور کلي معماري FPNI موضوع‌هاي عملکرد جداگانه نانوسيم‌ها و CMOS، اتصال دو لايه با جايگذاري مناسب پين‌ها و نانوسيم‌ها و افزايش ميزان خطا و تغيير پذيري در نانوسيم‌هاي Crossbar را بيان مي‌کند.
اولين ايده‌ها پيشنهاد پياده‌سازي demultiplexer‌ها را در نانوسيمهاي crossbar مطرح کرد. از اين طريق مي‌توان با تعداد کمي از پينها تعداد زيادي از نانوسيمها را کنترل کرد اما مشکلي که به‌وجود مي‌آيد اين است که ساخت demultipelexer بدون ابزارهاي غيرخطي تقريبا غيرممکن است.
در اين مقاله يک ساختار ترکيبي کلي از FPNI که بين سرعت، چگالي و قدرت تحمل پذيري مصالحه‌اي برقرار مي‌کند، پيشنهاد مي‌شود که نسبت به‌CMOL توان مصرفي کمتر و آزادي بيشتري در انتخاب ابزارهاي نانو وجود دارد.

2-2- اختلاف‌هاي اساسي FPNI با CMOL
در شکل 2 ساختار هندسي نانوسيمها، پين‌ها و cmos که در زير آن قرار مي‌گيرد را در دو فناوري cmol و fpni مقايسه مي‌کند. Cmol دريايي از invertorهاي منظم فرض مي‌شود که به‌پين‌هاي روي سطح سيليکون متصل هستند. نانوسيمهاي crossbar در بالاي آن اندکي چرخانده‌شده‌تا نانوسيمها با وضعيت بهتري به‌پينهاي روي سطح cmos متصل شوند. نانوسيمهاي افقي به‌ورودي invertorها وصل مي‌شوند و نانوسيمهاي عمودي فقط به‌خروجي آنها. اتصالات سبز رنگ انتخابي در شکل 2 نيز به‌صورت مقاومتهاي غيرخطي در نظر گرفته مي‌شود که تأثير مهمي در فراهم نمودن وارونگي و بهره دارد.
fpni در قسمت سمت راست شکل2 شامل مجموعه اي
 
شکل 2: cmol و fpni
 از گيت‌هاي منطقي، بافرها و ساير اجزاء در لايه cmos فرض مي‌شود و از نانوسيمها فقط براي interconnect استفاده مي‌شود. در اينجا نانوسيمها از لايه‌هايي جهت پوشاندن پين‌ها تشکيل شده‌است. (پين‌ها بزرگتر از نانوپين‌هاي cmol هستند.) در fpni نيز چرخش اندک نانوسيمها جهت اتصال آنها به‌پين‌ها وجود دارد. اتصالات انتخابي (سبز رنگ زير panel) هم عنوان مقاومتهايي جهت اتصال محاسباتي به‌کار رفته‌است.
در فناوري fpni مشکل اندازه و همترازي پين‌ها برطرف شده‌است.
در مجموع اختلاف بين دو فناوري cmol و fpni را مي‌توان به‌صورت زير بيان کرد:
در ساختار fpni محاسبه‌ها تنها در cmos انجام مي‌شود و آدرس دهي در نانوسيم ها. کاهش توان مصرفي باعث مي‌شود تا بتوان از Antifuseهاي خطي يا غير خطي در نقاط اتصال استفاده کرد.
همترازي نانوسيمهاي crossbar با پين‌هاي cmos در ساختارfpni.
در fpni از cmosمرسوم استفاده مي‌شود،
درحاليکه در cmolبه علت نياز به‌Vdd=0. 3v و کاهش منبع ولتاژ از cmos معمولي نميتوان استفاده کرد.

2-3- ساختار
در fpni نانوسيمها به‌صورت مورب آدرس دهي مي‌شود (با اندکي چرخش نسبت به‌طول) ، که به‌خاطر اتصال بهتر پينها با نانوسيمها است.
سطح cmos به‌سلولهاي مربعي منظم تقسيم مي‌شود، که به‌هر سلول يک پين ورودي براي خواندن يک سيگنال از نانوسيمها و يک پين خروجي جهت تحريک کردن يک سيگنال از گيت به‌نانوسيم متصل است.
يک بافر تنها در يک سلول پياده‌سازي مي‌شوند، در صورتيکه گيتهاي منطقي و فليپ فلاپها نياز به‌سلولهاي چندگانه دارند.
 
شکل 3: نمايي از سلولهاي سطح cmos
گيتهاي منطقي استفاده‌شده‌در اين ساختار n-input AND/NAND فرض مي‌شود، که بر روي n سلول پياده‌سازي خواهند شد. يک فليپ فلاپ درون چهار سلول پياده‌سازي مي‌شود، به‌طوريکه چهار پين ورودي همه به‌ورودي D فليپ فلاپ وصل مي‌شود. دوتا از چهار پين خروجي به‌Q و دوتاي ديگر به‌خروجي –Q وصل مي‌شود.
ورودي و خروجي‌هاي اوليه روي يک جفت سلول اعمال مي‌شود که به‌صورت يک سيگنال ورودي و يک سيگنال خروجي به‌کار گرفته مي‌شود. يک سيگنال ورودي شدت جريان خروجي را به‌آرايه‌هاي سلول مي‌رساند و آنرا به‌صورت واقعي و invertشده روي دو پين خروجي اعمال مي‌کند. سيگنال خروجي نيز از طريق يک نانوسيم به‌سمت دو پين ورودي هدايت شده‌از آنجا به‌خارج از تراشه ارسال مي‌شود.
در مجموع يک تراشه fpni از hypercellهاي يکسآنکه شامل گيتهاي منطقي، بافرها و فليپ فلاپ است، تشکيل شده‌است، که پيرامون آنرا سلولهاي I/O احاطه مي‌کند و يک ساختار مشابه به‌بلوک منطقي قابل شکل‌گيريCLB (Configurable Logic Block) به‌کار رفته در FPGA است.

2-4- پيکر‌بندي
وضعيت اتصال‌هاي استفاده‌شده‌مشابه cmol است. يک اتصال، به‌صورت يک آرايش الکتريکي با اعمال ولتاژ مناسب روي دو نانوسيم تعريف مي‌شود. آرايش نانوسيمها در يک تراشه cmos از ميان هر سلول مي‌گذرد و قبل از شکل دهي يک اتصال بافرها، گيتها و فليپ فلاپها در سلولها غيرفعال هستند. با اعمال ولتاژ مناسب به‌decoder‌ها که در لبه اطراف سلول واقع شده‌اند، سبب مي‌شود که دو ترانزيستور موجود در سلول که در شکل4 نشان داده شده‌است ولتاژهاي مختلفي را روي نانوسيم خروجي و نانوسيم ورودي انتخاب شده، داشته باشد. جهت شکل دهي حالت اتصال با اعمال ولتاژ در محل اتصال دو نانوسيم مي‌توان به‌اين منظور دست يافت، براي مثال در صورت اعمال ولتاژ مثبت Antifuse يک حالت کم مقاومت (low-impedance) پيدا مي‌کند و زماني که ولتاژ منفي اعمال شود به‌حالت مقاومت زياد (high-imedance) بر مي‌گردد.
 
شکل 4: نمايش ترانزيستورهاي درون يک سلول
به محض شکل‌گيري مدار وضعيت خطوط به‌سمت خاموشي ترانزيستورها در هر سلول پيش مي‌رود و گيتها، بافرها و فليپ فلاپها را جهت عمليات برنامه‌ريزي مدار فعال مي‌کند.

2-5- ساخت
نظر به‌اينکه در نانوالکترونيک به‌تعريف ساخت در ابعاد خيلي کوچک به‌وسيلة روشهاي توليد و ساخت photolihogeraphy پرداخته مي‌شود، لذا روش محتمل، Imprint lithogeraphy خواهد بود. به‌طوريکه علاوه‌بر قابليت همترازي پينها دسترسي به‌داده‌هاي بين لايه مورد نظرو اتصالهاي نانوسيمها مورد نظر است. شروع ساخت همان‌طور که در شکل 5 نشان داده شده‌است:
1-لايه اولconnectorها و سيمها هستند که به‌وسيله nanoimprint ساخته مي‌شوند و با لايه‌هاي زيرين نانوسيمها در يک سطح بر روي مجموعه‌اي از پينهاي روي زيرپايه قرار مي‌گيرند.
2- لايه‌اي از نانوسيمها که به‌صورت عمودي هستند را به‌طور هم سطح روي پينهاي نمايش داده‌شده‌قرار مي‌دهيم.
3-تمام سطح روي تراشه با لايه‌هايي از switch latch
 
شکل5: روش ساخت سلولها در fpni
پوشانده مي‌شود.
4- استفاده از ليتو گرافي استاندارد که از يک لايه ماسک روزنه دار که بر روي پينهاي زيرپايه قرار مي‌گيرد موادپوشاننده اين پينها را etch مي‌کنيم و لايه ماسک را بر مي‌داريم.
5- لايه دوم از نانوسيمها که به‌صورت افقي هستند را به‌طور هم سطح روي پينهاي نمايش داده‌شده‌قرار مي‌دهيم.
اين پروژه ساخت براي crossbar با کوچکتر از 65 نانومتر و نيم pitch مسئله ساز مي‌شود. کوچکتر به‌يک راهبرد خاص جهت توسعه اين موضوع جهت سيمهاي نازکتر از 65 نانومتر نياز داريم.

3- نتيجه‌گيري
با استفاده از روش مدل کردن و شبيه‌سازي مقايسه‌اي بين 17 نوع مدار معيار بين فناوري‌هاي cmol و fpni در دو اندازه 30 و 9 نانومتر در آزمايشگاه شرکتhp صورت گرفته‌است که نتايج آن را در جدول 1 آورده شده‌است.
تغييرپذيري در خواص نانوسيمها و اتصالهاي الکتريکي يک چالش را در عملکرد ابزار نشان مي‌دهد، و آن احتمال مشاهده تجربي و نظارت بر توان و clock rate ابزار است. همچنين در اثر گذشت زمان ابزار نياز به‌آدرس دهي مجدد دارند، که اين موضوع در هاله‌اي از ابهام قرار دارد و راه حلي براي آن ارائه نشده‌است. براي مثال مشخص نيست چه طولي براي شکل‌گيري اتصال لازم است. شايد پيکربندي يک تراشه fpni براي ادامه کار به‌صورت صحيح به‌تازه‌سازي در مدت زمانهاي منظم و متناوب نياز داشته باشد. fpni نسل آينده تراشه‌ها خواهد بود که از نظر عملکرد (توان، clock speed و سطح) و قدرت تحمل پذيري مطابق با ITRS در سالهاي آينده است.

شبيه‌سازي‌ها نشان مي‌دهد که براي fpni در مقياس 30nm در مقايسه با cmos-fpga چگالي هشت برابر افزايش مي‌يابد.
  منبع:سایت نانو

تعداد صفحات : 15

اطلاعات کاربری
  • فراموشی رمز عبور؟
  • آرشیو
    آمار سایت
  • کل مطالب : 153
  • کل نظرات : 7
  • افراد آنلاین : 10
  • تعداد اعضا : 1
  • آی پی امروز : 38
  • آی پی دیروز : 5
  • بازدید امروز : 47
  • باردید دیروز : 6
  • گوگل امروز : 0
  • گوگل دیروز : 0
  • بازدید هفته : 91
  • بازدید ماه : 91
  • بازدید سال : 2,001
  • بازدید کلی : 14,846