loading...
The most updated posts
oliver بازدید : 65 شنبه 28 اسفند 1389 نظرات (0)
يکي از پرکاربردترين ساختارهاي مورد بحث در فناوري نانو که به عرصه علوم زيستي وارد شده‌است، نانولوله‌هاي کربني هستند. اين نانوساختارها، به‌جهت بهره‌مندي از ويژگي‌هاي منحصربه‌فرد فيزيکي و شيميايي بالقوه، از توانايي‌هايي براي استفاده در حسگر‌هاي زيستي، حمل و نقل مولکولي، جستجوي الکتروشيميايي نمونه‌هاي بيولوژيک، داربست بافتي، فرستنده سيگنال‌ به سلول‌ها و روش‌هاي تشخيصي برخوردارند. اما پيش از به‌کارگيري نانولوله‌هاي کربني در موجودات زنده، بايد از سازگاري اين ساختارها در بافت زنده مطمئن شد. به اين منظور پژوهش‌هاي زيادي صورت گرفته‌است که تا حدودي سميت نانولوله‌هاي کربني و عوامل مؤثر بر آن مثل دوز، ساختمان، دنباله‌هاي شيميايي، سطح فعال و خلوص را مشخص نموده‌است. دانشمندان تاکنون توانسته‌اند از نانولوله‌هاي کربني در حسگرهاي پروتئيني، ناقل‌هاي پروتئيني، ميکروسکوپ‌ها، داربست بافتي سلول استخواني و عصبي، کانال‌هاي مولکولي و فرستنده سيگنال به سلول‌هاي عصبي استفاده کنند.
1. معرفي نانولوله‌هاي کربني
1-1. تاريخچه
 
به نظر مي‌رسد اولين رشته‌هاي در مقياس نانو در سال 1970 ميلادي توسط Marinobu Endo از دانشگاه اورلئان فرانسه تهيه شد. اين رشته‌ها هفت نانومتر قطر داشتند و با روش رشد توسط بخار تهيه شده بودند [1]. با اين حال امروزه نام ايجيما از آزمايشگاه NEC در تسوکوبا به‌عنوان اولين کسي که توسط HR-TEM در سال 1991 موفق به مشاهده نانولوله‌‌ها شد، در صدر محققان اين رشته‌ باقي مانده‌است [1و2و3و4]. در همين زمان و به طور مستقل در مسکو نيز دانشمندان موفق به کشف ريز‌لوله‌هايي شده بودند که البته نسبت طول به قطر آن کمتر از يافتة ايجيما بود. روس‌ها نام اين ماده را Barrelense گذاردند [1]. آنچه ايجيما موفق به مشاهده آن شده بود نانولوله چند لايه بود و وي به فاصله دو سال موفق به مشاهده نانولوله تک‌لايه نيز گشت. گروه رايس در 1996 موفق به ساخت دسته‌هاي موازي از نانولوله تک‌لايه شدند که راه را براي تحقيقات بيشتر روي فيزيک کوانتوم تک بعدي باز کرد [1].
1-2. ساختار
نانولوله بر اساس ساختمان گرافيت بنا مي‌شوند. گرافيت از لايه‌هاي مجزايي متشکل از اتم‌هاي کربن تشکيل شده‌‌است که به‌صورت واحد‌هايي شش‌ضلعي که در شش رأس آن اتم کربن قرار دارد آرايش يافته‌اند. قطر نانولوله بين يک تا دو نانو‌متر و طول آن گاه تا چند ميکرومتر نيز مي‌رسد. انتهاي هر دو سوي نانولوله‌ها مي‌تواند با نيمه‌‌اي از يک فولرين مسدود ‌باشد يا نباشد [1]. و لذا مي‌تواند در انتهاي خود علاوه بر اجزاي شش‌ضلعي داراي اجزاي پنج‌ضلعي نيز ‌باشد[3]. اما مهم‌‌ترين ويژگي که در تعيين خصوصيات نانولوله‌ها نقش بازي مي‌کند، با عنوان Chirality يا پيچش شناخته مي‌شود [1و2و4و5].
از ديگر ويژگي‌هاي ساختاري نانولوله‌ها حضور آنها به دو فرم نانولوله چند لايه با نام اختصاري MWNT و نانولوله‌هاي تک‌لايه با نام اختصاري SWNT است؛ هر يك از اين انواع داراي کاربرد‌هاي متفاوتي هستند.
 
1-3. روش‌هاي توليد
روش‌هاي توليد نانولوله‌هاي کربني به‌اختصار شامل موارد زير است[2]:
• تبخير يا سايش ليزري (Laser Vaporization/ablation)؛
• رسوب‌‌دهي شيميايي بخار به کمک حرارت (CVD)؛
• رسوب‌دهي شيميايي بخار به کمک پلاسما (PECVD)؛
• رشد فاز بخار؛
• الکتروليز؛
• سنتز شعله.
 
1-4. خصوصيات فيزيکي و شيميايي
نانولوله‌ها علي‌رغم برخورداري از قطر بسيار کم، استحکام کششي بالايي در حدود صد گيگاپاسکال دارند [2و5]. از ديگر خصوصيات نانولوله‌ها وجود پيوند‌هاي واندروالس بين اتم‌ها(و لذا توانايي بسيار پايين آنها براي چسبيدن به يکديگر)، خواص الکتريکي منحصر به فرد (نانولوله فلزي و نيمه هادي) [1و2و3و5]، رسانايي تنها در جهت طولي [1و2]، رسانايي حرارتي و خاصيت نشر ميداني [2و6و7] است. خاصيت نشر ميداني در ساختار‌هايي که داراي نسبت طول به قطر بالا (بزرگ‌تر از هزار) ، داراي رأس اتمي تيز، ثبات بالاي حرارتي و شيميايي و هدايت بالاي الکتريکي و گرمايي باشند، ديده مي‌شود [7و8].
 
2. ويژگي‌هاي زيستي نانولوله‌هاي کربني
با وجود خصوصيات متنوع نانولوله‌ها، دور از ذهن نيست که کاربرد‌هاي متنوعي نيز داشته باشند. در يک تقسيم‌بندي ساده مي‌توان بر‌هم‌کنش‌هاي زيستي نانولوله‌ها را از دو بعد درون‌سلولي و برون‌سلولي مورد بررسي قرار داد. به طور کلي مهم‌ترين عناوين کاربرد‌هاي نانولوله‌ها از ديد بيولوژيک عبارتند از:
• حسگر‌هاي زيستي؛
• حمل و نقل ملکولي؛
• جستجوي الکتروشيميايي نمونه‌هاي بيولوژيک؛
• داربست بافتي؛
• فرستنده سيگنال‌ به سلول‌ها؛
• روش‌هاي تشخيصي.
اما يکي از مهم‌ترين مباحث در راه استفاده از کارايي‌هاي نانولوله در بافت زنده، سازگاري زيستي آن است. لذا ابتدا مطالعات صورت گرفته در اين زمينه را مرور مي‌كنيم.
 
2-1. ساز‌گاري زيستي
جلب نظر دانشمندان به سازگاري زيستي نانولوله‌ها و اثرات مضر احتمالي آنها بر سلول‌ها، به اين واقعيت برمي‌گردد که در سال‌هاي اخير با افزايش روز‌ افزون کاربرد‌هاي نانولوله‌ها‌ در صنعت و حضور بيشتر آنها در محيط، ارتباط معنا‌‌داري بين آنها و بيماري‌هايي از جمله بيماري‌هاي تنفسي [9] و پوستي [10] پيدا شده‌است. اين امر مراکز علمي و تحقيقاتي را بر آن داشته‌ است تا به بررسي اساسي اين تأثيرات، يعني تأثير نانولوله بر سلول بپردازند. علي‌رغم مطالعاتي که در ابتدا نشان مي‌داد که نانولوله و هم‌خانواده‌هاي آن تأثير چنداني بر مورفولوژي، رشد و تکثير سلولي ندارند [11]، امروزه مشخص شده‌است که شاخص‌هايي چون ابعاد فيزيکي، مساحت، دوز، نسبت طول به قطر، زمان، خلوص و وجود عوامل شيميايي متصل به سطح، هر يک به نوبه خود در خاصيت سيتوتوکسيتي نانولوله مؤثرند [12و13و14و15]. هر يک از مطالعات صورت گرفته روي يکي از متغير‌هاي مذکور تمرکز بيشتري دارند، اما به نظر مي‌رسد که دوز، خلوص و حضور دنباله‌هاي شيميايي متصل به سطح از موارد مهم‌تر باشند.
مطالعات نشان داده‌اند که آستانه اثر کشندگي نانولوله براي نانولوله‌هاي چند ديواره و تک‌ديواره ، حدود 06/3 ميکروگرم در ميلي‌ليتر است که اين رقم در برابر C60 (فولرين) که تا 226 ميکروگرم در ميلي‌ليتر نيز اثر کشندگي براي سلول ندارد، رقمي قابل توجه است [16]. آخرين و مهم‌ترين مقاله منتشر شده در اين زمينه توسط انجمن شيمي آمريکا، در مقايسه‌اي بين سيتوکسيتي MWCNT، SWCNT، کوارتز و C60، به‌ترتيب توان کشندگي اين مواد براي سلول را به اين شکل بيان مي‌کند:
 

C60 < کوارتز < SWCNT > MWCNT

نکته جالب آن است که اگر چه با افزايش دوز نانولوله در محيط کشت، اثر کشندگي آن نيز افزايش مي‌يابد، اما اين ارتباط، خطي و منظم نيست [15]. نکته ديگر در مورد اثر دوز اينکه نانولوله در دوز‌هاي پايين اثري عکس اثرات آن در دوز‌هاي بالا دارد.
بررسي‌ها نشان مي‌دهد که نانولولة خالص داراي اثرات سمي بيشتري نسبت به نوع ناخالص آن است[12]. اما مهم‌تر از خلوص، اثر عوامل شيميايي بر روي سطح نانولوله است که موجب کاهش اثرات سمي آن مي‌شود [13]. اضافه نمودن عوامل شيميايي بر روي سطحِ نانولوله را فعال سازي (Functionalization) مي‌گويند که به نوبه خود موجب تسهيل به‌کارگيري نانولوله در صنايع مي‌گردد.
برخي از مطالعات به نحوة اثر نانولوله در سلول و علت مستقيم مرگ سلولي ناشي از آن اختصاص دارند. به طور کلي سلول‌ها در مواجهه با نانولوله، پاسخ‌‌هاي گسترده و بعضاً متناقضي از خود نشان مي‌دهند. اين پاسخ‌هاي سلولي عبارتند از: فعال‌سازي ژن‌هاي مؤثر در حمل و نقل سلولي، متابوليسم، تنظيم سيکل سلولي و رشد سلولي پاسخ‌هاي استرسي و اکسيد‌اتيو، توليد و ترشح پروتئين از سلول، توقف رشد سلولي و در نهايت آپوپتوز و نکروز [10و14و15و17].
طبق مطالعات صورت گرفته، نانولوله‌ها در دوز‌هاي پايين‌تر موجب افزايش رشد و متابوليسم سلولي و در دوز‌هاي بالاتر موجب واکنش‌هاي التهابي و پاسخ‌هاي ايمني سلولي، مشابه وضعيتي که در برابر تهاجم يک عفونت وريدي از خود نشان مي‌دهد، مي‌شوند [15]. در واقع مرگ سلول‌ها در مواجهه با نانولوله‌ها مشابه ديگر موارد مرگ سلولي، ناشي از تشکيل راديکال‌هاي آزاد و عوارض ناشي از آن، تخليه مواد آنتي‌اکسيدان و up-regulation برخي از ژن‌ها و down-regulation برخي از ژن‌‌هاي ديگر است [10و14و17].
اثرات نانولوله بر روي بيان ژني که تا به حال کشف شده‌است عبارت است از: up-regulation بيان ژن‌هاي مؤثر در سيکل سلولي مثل P38, CdC37, CdC42, hrk, P57, bax, P16 و Down-regulation بيان ژن‌هاي مؤثر در سيکل سلول مثل Cdk2 و Cdk4، Cdk6 و Cyclin D3 و نيز down-regulation بيان ژن‌هاي مرتبط با سيگنال‌هاي سلولي مثل pcdha9, ttk, jak1, mad2 و erk. همچنين موجب القاي down-regulation بيان پروتئين‌هاي دخيل در اتصالات سلولي مانند لامينين، فيبرونکتين، کادهرين و FAR و کلاژن نوع چهار مي‌شوند[14و17].
از اين ميان دانشمندان مهم‌ترين تأثير نانولوله‌ها را در سيکل ميتوز در مرحله G1 مي‌دانند و توقف سلول در فاز G1 را عامل اصلي آپوپتوز قلمداد مي‌کنند[17].
 
2-2. نانولوله‌هاي کربني: ابزار‌هاي قدرتمند زيستي
چنانچه عنوان شد، با در نظر گرفته خطرات احتمالي نانولوله‌ها براي سلول و بافت، اين ساختار‌هاي نانويي بالقوه از کاربرد‌هاي فراواني در موجودات زنده برخوردارند. اگرچه ترس از عدم سازگاري زيستي موجب کند شدن روند تحقيقات در اين زمينه شده‌است، با اين حال تاکنون دانشمندان به نتايج قابل قبولي نيز دست يافته‌اند که در ادامه به آنها اشاره مي‌شود.
 
2-2-1. حسگر‌هاي زيستي
هرگونه تغييري در ساختمان و اجزاي نانولوله‌ها موجب تغيير در قدرت هدايت الکتريکي آنها خواهد شد. دانشمندان دريافته‌اند که فعال‌سازي نيز متناسب با خصوصيات مولکول پيوند شده، موجب تغييراتي در هدايت الکتريکي و تابش نور از نانولوله مي‌شود که منحصر به همان مولکول است[18]. تاکنون مطالعاتي روي پروتئين‌ها، کربوهيدارت‌ها و آنتي‌بادي‌هاي مختلف صورت گرفته‌است که همگي تأييدي بر اين فرضيه بوده‌اند[18و19و20]. لذا متصور خواهد بود که با حضور هر نوع مولکول در محيط‌ حاوي نانولوله و اتصال به آن مي‌توان فرکانس الکتريکي يا طول نوراني متفاوتي را ثبت کرد و به حضور آن ماده در محيط پي برد.
2-2-2. حمل و نقل ملکولي
تاکنون مطالعاتي روي توانايي نانولوله‌ها در جابه‌جا نمودن مولکول‌ها صورت گرفته‌است. اين بررسي‌ها غالباً به دو دسته تقسيم مي‌شوند: مطالعاتي که به بررسي عبور مولکول‌ها از درون نانولوله [20] و جاگذاري مولکول‌ها درون آنها [29] اختصاص دارند و مطالعاتي که بر پايه اتصال مولکول‌ها به سطح نانولوله و انتقال از اين طريق بنا شده‌اند[21]. در نوع اول دانشمندان موفق به مشاهده عبور مولکول آب، +H، برخي از يون‌ها و بعضاً پليمر‌ها از درون نانولوله شده‌اند[20]، آنها با جايگذاري داروهاي ضد سرطان (مثل سيس پلاتين) درون نانولوله‌ها موفق به انتقال آنها به اطراف سلول و آزادسازي آهستة آنها از درون نانولوله شده‌اند[29]. در نوع ديگر عموماً نقل و انتقال پروتئين‌ها توسط نانولوله‌ها بررسي شده‌است. اين مطالعات نشان مي‌دهند که با فعال سازي نانولوله توسط بنيان اسيدي مي‌توان قابليت اتصال اين مواد به پروتئين‌ها را افزايش داد و به اين طريق انتقال پروتئين‌ها به درون سلول را تسهيل کرد[21]. البته اين توانايي نانولوله‌ها به اندازه پروتئين‌ نيز بستگي دارد و در اندازه‌هاي بزرگ‌تر اين توانايي از نانولوله صلب مي‌شود. در همين رابطه مي‌توان توانايي نانولوله را براي انتقال ژن‌ها به درون سلول نيز ذکر کرد [22]. که البته مطالعات در اين زمينه همچنان ادامه دارد. چنانچه بتوان از نانولوله به عنوان ناقل ژني استفاده کرد، مي‌توان آينده درخشاني را براي ژن‌درماني و روش‌هاي مشابه متصور بود.
 
2-2-3. داربست بافتي
اخيراً توجه دانشمندان به اين قابليت نانولوله‌ها جلب شده‌است که همانند داربست‌هاي طبيعي بافتي محتوي کلاژن، مي‌توانند به عنوان داربست (Scaffold) براي رشد سلول‌هاي روي آنها مورد استفاده قرار بگيرند. احتمالاً ايده‌ اوليه از آنجا منشأ مي‌گيرد که نانولوله‌ها هنگام توليد به صورت رشته‌هايي درهم آرايش مي‌يابند که به آن فرم ماکاروني اطلاق مي‌شود. اين مشابه وضعيت کلاژن‌ها در مايع خارج سلولي است. نام ديگر اين آرايش bucky paper است [19].
دانشمندان دريافته‌‌اند که SWCNTهاي بافته نشده (non woven) داراي خاصيت داربستي بيشتري نسبت به ديگر انواع هستند. در اين حال قابليت تکثير و چسبندگي سلولي نيز افزايش چشمگيري دارد [23]. مهم‌ترين دستاورد محققان در اين زمينه، کشت استئوبلاست‌ها روي نانولوله‌هاست که به‌تازگي در مقاله‌اي توسط محققان دانشگاه کاليفرنيا در سال 2006 منتشر شده‌است و توجهات زيادي را به خود جلب کرده‌است. اين يافته راه را براي به کار‌گيري نانولوله‌ها در ترميم آسيب‌هاي سلولي باز مي‌کند [24]. بيش از اين نيز اتصالات محکم استئوبلاست‌ها به داربست نانولوله‌اي توسط filopodiaهاي شکل‌گرفته در حين کشت به اثبات رسيده بود [25]. با اين حال مطالعاتي نيز نشان مي‌دهند که اتصالات بين سلول و داربست نانولوله سست بود و سلول‌ها قادر به نفوذ به داربست نيستند[8].
يافته ديگري که توسط دانشگاه کاليفرنيا اعلام شده‌است، احتمال به‌كار‌گيري نانولوله‌ها در ترميم ضايعات نخاعي است. در اين حال حضور نانولوله‌ها در محيط موجب هدايت رشد آکسوني مي‌شود‌[26].
2-2-4. ديگر کاربرد‌ها
ديگر کاربرد‌هايي که امروزه مطالعاتي بر روي آنها در حال انجام است عبارتند از: الف) فرستادن سيگنال به سلول‌هاي عصبي [27] که در آن همزمان با ايجاد داربست مناسب براي رشد سلول‌هاي عصبي (توسط فعال‌سازي مناسب نانولوله‌ها) مي‌توان سيگنال‌هاي الکتريکي را به سلول عصبي فرستاد؛ ب) روش‌هاي تشخيصي زيستي [28] که اولين مرحله اين کاربرد بر روي مالاريا و تشخيص گلبول‌هاي قرمز آلوده به اين تک ياخته Plasmodium falciparum صورت گرفته‌است و در حقيقت ميکروسکوپ AFM بر اين پايه عمل مي‌کند؛ ج) جستجوي الکتروشيميايي [20] که در واقع از خاصيت قطبيت‌پذيري نانولوله‌ها استفاده و آن را به ابزاري تحت عنوان «ion-nanotube terahertz osillator» تبديل کرده‌است. در اين حالت يون مورد نظر (مثلاً +K) با گيرافتادن در دالان نانولوله با فرکانس بالا شروع به حرکت به دو سوي نانولوله مي‌کند. حاصل اين فرايند ايجاد جريان الکتريکي متناوب با فرکانس بالا خواهد بود که از خارج قابل اندازه‌گيري است.
 
3. جمع بندي
نانولوله‌هاي کربني به جهت قدرت الاستيسيتة بالا و در عين حال استحکام فوق العاده، به عنوان داربست سلولي براي رشد سلول‌هاي استخواني و عصبي مورد استفاده قرار گرفته‌اند. به علاوه در عين حال که سلول‌ها روي شبکه‌اي تور مانند از اين مواد شروع به رشد و تکثير مي‌کنند، دانشمندان توانسته‌اند از قابليت هدايت ويژه الکتريکي نانولوله‌هاي کربني استفاده و از آنها به عنوان راهي براي فرستادن پيام به سلول‌ها استفاده کنند. اين يافته‌ها تداعي‌کنندة نياز مبرم علم پزشکي و مخصوصاً شاخه‌هاي جراحي پلاستيک و پيوند اعضا، به رشد و تکثير و پرورش سلول‌هاي مورد نظر در خارج از بدن و سپس انتقال آنها به بدن است. در اين فرايند کاستن از رد شدن بافت پيوندي توسط دستگاه ايمني بدن از جايگاه ويژه‌اي برخوردار است که تحقيقات چند سال اخير روي سازگاري زيستي نانولوله‌هاي کربني آن را نشان داده‌است. با تغييراتي در ساختار و ترکيبات اين مواد مي‌توان آنها را به ساختمان‌هايي سازگار با دستگاه ايمني بدن تبديل کرد. به‌علاوه اتصال محکم سلول‌ها به اين ساختارها مشکل ديگر پيوند اعضا، يعني سستي سلول‌ها پس از پيوند را مرتفع خواهد ساخت.
همچنين قابليت ذخيره‌سازي مولکول‌ها در داخل نانولوله‌هاي کربني، درهاي تازه‌اي را به روي حمل و نقل مواد حاجب و داروها در داخل بدن گشوده‌است؛ چنانچه هر دوي اين کاربردها در خارج از بدن انسان به اثبات رسيده‌اند. مشابه اين کاربرد، توانايي نانولوله‌هاي کربني فعال‌سازي شده براي اتصال به پروتئين‌ها و انتقال آنها به داخل سلول است که به تازگي نظر دانشمندان را به خود جلب نموده‌است.
از مهم‌ترين و اولين کاربردهاي نانولوله‌هاي کربني در محيط‌هاي زنده، توانايي آنها براي اتصال به مولکول‌هاي آلي مختلف و امکان جستجوي آن ماده بر اساس تغييرات هدايت الکتريکي نانولوله بوده‌است. اين کاربرد، از برجسته‌ترين تقابل‌هاي علم الکترونيک و بيولوژي در بهره‌برداري از فناوري‌نانو بوده‌است.
با توجه به آنچه گذشت و طبق اطلاعات موجود از امکانات حال حاضر کشورمان، به نظر مي‌رسد که با برقراري ارتباط بيشتر بين محققان علوم زيستي و علوم مهندسي، هيچ‌يک از اين کاربردها هم اکنون دست نايافتني نيستند. در حقيقت ذکر چنين کابردهايي از نانولوله‌هاي کربني که تنها يک نانوذره از ميان هزاران نانوذرة موجود است، هدفي به جز ايجاد انگيزه بيشتر براي ورود مهندسان علوم الکترونيک، مواد و شيمي به حوزه علوم زيستي و بالعکس آشنايي بيشتر محققان علوم زيستي با بعد فني و مهندسي فناوري نانو نخواهد داشت. منبع:سایت نانو
ارسال نظر برای این مطلب

کد امنیتی رفرش
اطلاعات کاربری
  • فراموشی رمز عبور؟
  • آرشیو
    آمار سایت
  • کل مطالب : 153
  • کل نظرات : 7
  • افراد آنلاین : 13
  • تعداد اعضا : 1
  • آی پی امروز : 47
  • آی پی دیروز : 3
  • بازدید امروز : 52
  • باردید دیروز : 4
  • گوگل امروز : 0
  • گوگل دیروز : 0
  • بازدید هفته : 196
  • بازدید ماه : 196
  • بازدید سال : 2,106
  • بازدید کلی : 14,951